extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC18).D6 = C2xC9.S4 | φ: D6/C2 → S3 ⊆ Aut C2xC18 | 54 | 6+ | (C2xC18).D6 | 432,224 |
(C2xC18).2D6 = D4xD27 | φ: D6/C3 → C22 ⊆ Aut C2xC18 | 108 | 4+ | (C2xC18).2D6 | 432,47 |
(C2xC18).3D6 = D4:2D27 | φ: D6/C3 → C22 ⊆ Aut C2xC18 | 216 | 4- | (C2xC18).3D6 | 432,48 |
(C2xC18).4D6 = Dic3.D18 | φ: D6/C3 → C22 ⊆ Aut C2xC18 | 72 | 4 | (C2xC18).4D6 | 432,309 |
(C2xC18).5D6 = D18.4D6 | φ: D6/C3 → C22 ⊆ Aut C2xC18 | 72 | 4- | (C2xC18).5D6 | 432,310 |
(C2xC18).6D6 = C36.27D6 | φ: D6/C3 → C22 ⊆ Aut C2xC18 | 216 | | (C2xC18).6D6 | 432,389 |
(C2xC18).7D6 = C9xD4:2S3 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 72 | 4 | (C2xC18).7D6 | 432,359 |
(C2xC18).8D6 = Dic3xDic9 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 144 | | (C2xC18).8D6 | 432,87 |
(C2xC18).9D6 = Dic9:Dic3 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 144 | | (C2xC18).9D6 | 432,88 |
(C2xC18).10D6 = C18.Dic6 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 144 | | (C2xC18).10D6 | 432,89 |
(C2xC18).11D6 = Dic3:Dic9 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 144 | | (C2xC18).11D6 | 432,90 |
(C2xC18).12D6 = D18:Dic3 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 144 | | (C2xC18).12D6 | 432,91 |
(C2xC18).13D6 = C6.18D36 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 72 | | (C2xC18).13D6 | 432,92 |
(C2xC18).14D6 = D6:Dic9 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 144 | | (C2xC18).14D6 | 432,93 |
(C2xC18).15D6 = C2xC9:Dic6 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 144 | | (C2xC18).15D6 | 432,303 |
(C2xC18).16D6 = C2xDic3xD9 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 144 | | (C2xC18).16D6 | 432,304 |
(C2xC18).17D6 = D18.3D6 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 72 | 4 | (C2xC18).17D6 | 432,305 |
(C2xC18).18D6 = C2xC18.D6 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 72 | | (C2xC18).18D6 | 432,306 |
(C2xC18).19D6 = C2xC3:D36 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 72 | | (C2xC18).19D6 | 432,307 |
(C2xC18).20D6 = C2xS3xDic9 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 144 | | (C2xC18).20D6 | 432,308 |
(C2xC18).21D6 = C2xD6:D9 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 144 | | (C2xC18).21D6 | 432,311 |
(C2xC18).22D6 = C2xC9:D12 | φ: D6/S3 → C2 ⊆ Aut C2xC18 | 72 | | (C2xC18).22D6 | 432,312 |
(C2xC18).23D6 = C9xC4oD12 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 72 | 2 | (C2xC18).23D6 | 432,347 |
(C2xC18).24D6 = C4xDic27 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 432 | | (C2xC18).24D6 | 432,11 |
(C2xC18).25D6 = Dic27:C4 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 432 | | (C2xC18).25D6 | 432,12 |
(C2xC18).26D6 = C4:Dic27 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 432 | | (C2xC18).26D6 | 432,13 |
(C2xC18).27D6 = D54:C4 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 216 | | (C2xC18).27D6 | 432,14 |
(C2xC18).28D6 = C54.D4 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 216 | | (C2xC18).28D6 | 432,19 |
(C2xC18).29D6 = C2xDic54 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 432 | | (C2xC18).29D6 | 432,43 |
(C2xC18).30D6 = C2xC4xD27 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 216 | | (C2xC18).30D6 | 432,44 |
(C2xC18).31D6 = C2xD108 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 216 | | (C2xC18).31D6 | 432,45 |
(C2xC18).32D6 = D108:5C2 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 216 | 2 | (C2xC18).32D6 | 432,46 |
(C2xC18).33D6 = C22xDic27 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 432 | | (C2xC18).33D6 | 432,51 |
(C2xC18).34D6 = C2xC27:D4 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 216 | | (C2xC18).34D6 | 432,52 |
(C2xC18).35D6 = C4xC9:Dic3 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 432 | | (C2xC18).35D6 | 432,180 |
(C2xC18).36D6 = C6.Dic18 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 432 | | (C2xC18).36D6 | 432,181 |
(C2xC18).37D6 = C36:Dic3 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 432 | | (C2xC18).37D6 | 432,182 |
(C2xC18).38D6 = C6.11D36 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 216 | | (C2xC18).38D6 | 432,183 |
(C2xC18).39D6 = C62.127D6 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 216 | | (C2xC18).39D6 | 432,198 |
(C2xC18).40D6 = C23xD27 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 216 | | (C2xC18).40D6 | 432,227 |
(C2xC18).41D6 = C2xC12.D9 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 432 | | (C2xC18).41D6 | 432,380 |
(C2xC18).42D6 = C2xC4xC9:S3 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 216 | | (C2xC18).42D6 | 432,381 |
(C2xC18).43D6 = C2xC36:S3 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 216 | | (C2xC18).43D6 | 432,382 |
(C2xC18).44D6 = C36.70D6 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 216 | | (C2xC18).44D6 | 432,383 |
(C2xC18).45D6 = C22xC9:Dic3 | φ: D6/C6 → C2 ⊆ Aut C2xC18 | 432 | | (C2xC18).45D6 | 432,396 |
(C2xC18).46D6 = Dic3xC36 | central extension (φ=1) | 144 | | (C2xC18).46D6 | 432,131 |
(C2xC18).47D6 = C9xDic3:C4 | central extension (φ=1) | 144 | | (C2xC18).47D6 | 432,132 |
(C2xC18).48D6 = C9xC4:Dic3 | central extension (φ=1) | 144 | | (C2xC18).48D6 | 432,133 |
(C2xC18).49D6 = C9xD6:C4 | central extension (φ=1) | 144 | | (C2xC18).49D6 | 432,135 |
(C2xC18).50D6 = C9xC6.D4 | central extension (φ=1) | 72 | | (C2xC18).50D6 | 432,165 |
(C2xC18).51D6 = C18xDic6 | central extension (φ=1) | 144 | | (C2xC18).51D6 | 432,341 |
(C2xC18).52D6 = S3xC2xC36 | central extension (φ=1) | 144 | | (C2xC18).52D6 | 432,345 |
(C2xC18).53D6 = C18xD12 | central extension (φ=1) | 144 | | (C2xC18).53D6 | 432,346 |
(C2xC18).54D6 = Dic3xC2xC18 | central extension (φ=1) | 144 | | (C2xC18).54D6 | 432,373 |