Extensions 1→N→G→Q→1 with N=C2xC18 and Q=D6

Direct product G=NxQ with N=C2xC18 and Q=D6
dρLabelID
S3xC22xC18144S3xC2^2xC18432,557

Semidirect products G=N:Q with N=C2xC18 and Q=D6
extensionφ:Q→Aut NdρLabelID
(C2xC18):D6 = D9xS4φ: D6/C1D6 ⊆ Aut C2xC18366+(C2xC18):D6432,521
(C2xC18):2D6 = C18xS4φ: D6/C2S3 ⊆ Aut C2xC18543(C2xC18):2D6432,532
(C2xC18):3D6 = C2xC9:S4φ: D6/C2S3 ⊆ Aut C2xC18546+(C2xC18):3D6432,536
(C2xC18):4D6 = D9xC3:D4φ: D6/C3C22 ⊆ Aut C2xC18724(C2xC18):4D6432,314
(C2xC18):5D6 = D18:D6φ: D6/C3C22 ⊆ Aut C2xC18364+(C2xC18):5D6432,315
(C2xC18):6D6 = D4xC9:S3φ: D6/C3C22 ⊆ Aut C2xC18108(C2xC18):6D6432,388
(C2xC18):7D6 = S3xD4xC9φ: D6/S3C2 ⊆ Aut C2xC18724(C2xC18):7D6432,358
(C2xC18):8D6 = S3xC9:D4φ: D6/S3C2 ⊆ Aut C2xC18724(C2xC18):8D6432,313
(C2xC18):9D6 = C22xS3xD9φ: D6/S3C2 ⊆ Aut C2xC1872(C2xC18):9D6432,544
(C2xC18):10D6 = C18xC3:D4φ: D6/C6C2 ⊆ Aut C2xC1872(C2xC18):10D6432,375
(C2xC18):11D6 = C2xC6.D18φ: D6/C6C2 ⊆ Aut C2xC18216(C2xC18):11D6432,397
(C2xC18):12D6 = C23xC9:S3φ: D6/C6C2 ⊆ Aut C2xC18216(C2xC18):12D6432,560

Non-split extensions G=N.Q with N=C2xC18 and Q=D6
extensionφ:Q→Aut NdρLabelID
(C2xC18).D6 = C2xC9.S4φ: D6/C2S3 ⊆ Aut C2xC18546+(C2xC18).D6432,224
(C2xC18).2D6 = D4xD27φ: D6/C3C22 ⊆ Aut C2xC181084+(C2xC18).2D6432,47
(C2xC18).3D6 = D4:2D27φ: D6/C3C22 ⊆ Aut C2xC182164-(C2xC18).3D6432,48
(C2xC18).4D6 = Dic3.D18φ: D6/C3C22 ⊆ Aut C2xC18724(C2xC18).4D6432,309
(C2xC18).5D6 = D18.4D6φ: D6/C3C22 ⊆ Aut C2xC18724-(C2xC18).5D6432,310
(C2xC18).6D6 = C36.27D6φ: D6/C3C22 ⊆ Aut C2xC18216(C2xC18).6D6432,389
(C2xC18).7D6 = C9xD4:2S3φ: D6/S3C2 ⊆ Aut C2xC18724(C2xC18).7D6432,359
(C2xC18).8D6 = Dic3xDic9φ: D6/S3C2 ⊆ Aut C2xC18144(C2xC18).8D6432,87
(C2xC18).9D6 = Dic9:Dic3φ: D6/S3C2 ⊆ Aut C2xC18144(C2xC18).9D6432,88
(C2xC18).10D6 = C18.Dic6φ: D6/S3C2 ⊆ Aut C2xC18144(C2xC18).10D6432,89
(C2xC18).11D6 = Dic3:Dic9φ: D6/S3C2 ⊆ Aut C2xC18144(C2xC18).11D6432,90
(C2xC18).12D6 = D18:Dic3φ: D6/S3C2 ⊆ Aut C2xC18144(C2xC18).12D6432,91
(C2xC18).13D6 = C6.18D36φ: D6/S3C2 ⊆ Aut C2xC1872(C2xC18).13D6432,92
(C2xC18).14D6 = D6:Dic9φ: D6/S3C2 ⊆ Aut C2xC18144(C2xC18).14D6432,93
(C2xC18).15D6 = C2xC9:Dic6φ: D6/S3C2 ⊆ Aut C2xC18144(C2xC18).15D6432,303
(C2xC18).16D6 = C2xDic3xD9φ: D6/S3C2 ⊆ Aut C2xC18144(C2xC18).16D6432,304
(C2xC18).17D6 = D18.3D6φ: D6/S3C2 ⊆ Aut C2xC18724(C2xC18).17D6432,305
(C2xC18).18D6 = C2xC18.D6φ: D6/S3C2 ⊆ Aut C2xC1872(C2xC18).18D6432,306
(C2xC18).19D6 = C2xC3:D36φ: D6/S3C2 ⊆ Aut C2xC1872(C2xC18).19D6432,307
(C2xC18).20D6 = C2xS3xDic9φ: D6/S3C2 ⊆ Aut C2xC18144(C2xC18).20D6432,308
(C2xC18).21D6 = C2xD6:D9φ: D6/S3C2 ⊆ Aut C2xC18144(C2xC18).21D6432,311
(C2xC18).22D6 = C2xC9:D12φ: D6/S3C2 ⊆ Aut C2xC1872(C2xC18).22D6432,312
(C2xC18).23D6 = C9xC4oD12φ: D6/C6C2 ⊆ Aut C2xC18722(C2xC18).23D6432,347
(C2xC18).24D6 = C4xDic27φ: D6/C6C2 ⊆ Aut C2xC18432(C2xC18).24D6432,11
(C2xC18).25D6 = Dic27:C4φ: D6/C6C2 ⊆ Aut C2xC18432(C2xC18).25D6432,12
(C2xC18).26D6 = C4:Dic27φ: D6/C6C2 ⊆ Aut C2xC18432(C2xC18).26D6432,13
(C2xC18).27D6 = D54:C4φ: D6/C6C2 ⊆ Aut C2xC18216(C2xC18).27D6432,14
(C2xC18).28D6 = C54.D4φ: D6/C6C2 ⊆ Aut C2xC18216(C2xC18).28D6432,19
(C2xC18).29D6 = C2xDic54φ: D6/C6C2 ⊆ Aut C2xC18432(C2xC18).29D6432,43
(C2xC18).30D6 = C2xC4xD27φ: D6/C6C2 ⊆ Aut C2xC18216(C2xC18).30D6432,44
(C2xC18).31D6 = C2xD108φ: D6/C6C2 ⊆ Aut C2xC18216(C2xC18).31D6432,45
(C2xC18).32D6 = D108:5C2φ: D6/C6C2 ⊆ Aut C2xC182162(C2xC18).32D6432,46
(C2xC18).33D6 = C22xDic27φ: D6/C6C2 ⊆ Aut C2xC18432(C2xC18).33D6432,51
(C2xC18).34D6 = C2xC27:D4φ: D6/C6C2 ⊆ Aut C2xC18216(C2xC18).34D6432,52
(C2xC18).35D6 = C4xC9:Dic3φ: D6/C6C2 ⊆ Aut C2xC18432(C2xC18).35D6432,180
(C2xC18).36D6 = C6.Dic18φ: D6/C6C2 ⊆ Aut C2xC18432(C2xC18).36D6432,181
(C2xC18).37D6 = C36:Dic3φ: D6/C6C2 ⊆ Aut C2xC18432(C2xC18).37D6432,182
(C2xC18).38D6 = C6.11D36φ: D6/C6C2 ⊆ Aut C2xC18216(C2xC18).38D6432,183
(C2xC18).39D6 = C62.127D6φ: D6/C6C2 ⊆ Aut C2xC18216(C2xC18).39D6432,198
(C2xC18).40D6 = C23xD27φ: D6/C6C2 ⊆ Aut C2xC18216(C2xC18).40D6432,227
(C2xC18).41D6 = C2xC12.D9φ: D6/C6C2 ⊆ Aut C2xC18432(C2xC18).41D6432,380
(C2xC18).42D6 = C2xC4xC9:S3φ: D6/C6C2 ⊆ Aut C2xC18216(C2xC18).42D6432,381
(C2xC18).43D6 = C2xC36:S3φ: D6/C6C2 ⊆ Aut C2xC18216(C2xC18).43D6432,382
(C2xC18).44D6 = C36.70D6φ: D6/C6C2 ⊆ Aut C2xC18216(C2xC18).44D6432,383
(C2xC18).45D6 = C22xC9:Dic3φ: D6/C6C2 ⊆ Aut C2xC18432(C2xC18).45D6432,396
(C2xC18).46D6 = Dic3xC36central extension (φ=1)144(C2xC18).46D6432,131
(C2xC18).47D6 = C9xDic3:C4central extension (φ=1)144(C2xC18).47D6432,132
(C2xC18).48D6 = C9xC4:Dic3central extension (φ=1)144(C2xC18).48D6432,133
(C2xC18).49D6 = C9xD6:C4central extension (φ=1)144(C2xC18).49D6432,135
(C2xC18).50D6 = C9xC6.D4central extension (φ=1)72(C2xC18).50D6432,165
(C2xC18).51D6 = C18xDic6central extension (φ=1)144(C2xC18).51D6432,341
(C2xC18).52D6 = S3xC2xC36central extension (φ=1)144(C2xC18).52D6432,345
(C2xC18).53D6 = C18xD12central extension (φ=1)144(C2xC18).53D6432,346
(C2xC18).54D6 = Dic3xC2xC18central extension (φ=1)144(C2xC18).54D6432,373

׿
x
:
Z
F
o
wr
Q
<