Copied to
clipboard

G = C2×C9.S4order 432 = 24·33

Direct product of C2 and C9.S4

direct product, non-abelian, soluble, monomial

Aliases: C2×C9.S4, C23⋊D27, C22⋊D54, C18.4S4, C9.(C2×S4), (C2×C18).D6, (C2×C6).D18, C9.A4⋊C22, C6.4(C3.S4), (C22×C6).3D9, (C22×C18).3S3, (C2×C9.A4)⋊C2, C3.(C2×C3.S4), SmallGroup(432,224)

Series: Derived Chief Lower central Upper central

C1C22C9.A4 — C2×C9.S4
C1C22C2×C6C2×C18C9.A4C9.S4 — C2×C9.S4
C9.A4 — C2×C9.S4
C1C2

Generators and relations for C2×C9.S4
 G = < a,b,c,d,e,f | a2=b9=c2=d2=f2=1, e3=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=b-1e2 >

Subgroups: 814 in 79 conjugacy classes, 17 normal (15 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, C9, Dic3, D6, C2×C6, C2×C6, C2×D4, D9, C18, C18, C2×Dic3, C3⋊D4, C22×S3, C22×C6, C27, Dic9, D18, C2×C18, C2×C18, C2×C3⋊D4, D27, C54, C2×Dic9, C9⋊D4, C22×D9, C22×C18, C9.A4, D54, C2×C9⋊D4, C9.S4, C2×C9.A4, C2×C9.S4
Quotients: C1, C2, C22, S3, D6, D9, S4, D18, C2×S4, D27, C3.S4, D54, C2×C3.S4, C9.S4, C2×C9.S4

Smallest permutation representation of C2×C9.S4
On 54 points
Generators in S54
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 28)(12 29)(13 30)(14 31)(15 32)(16 33)(17 34)(18 35)(19 36)(20 37)(21 38)(22 39)(23 40)(24 41)(25 42)(26 43)(27 44)
(1 4 7 10 13 16 19 22 25)(2 5 8 11 14 17 20 23 26)(3 6 9 12 15 18 21 24 27)(28 31 34 37 40 43 46 49 52)(29 32 35 38 41 44 47 50 53)(30 33 36 39 42 45 48 51 54)
(1 45)(2 46)(4 48)(5 49)(7 51)(8 52)(10 54)(11 28)(13 30)(14 31)(16 33)(17 34)(19 36)(20 37)(22 39)(23 40)(25 42)(26 43)
(2 46)(3 47)(5 49)(6 50)(8 52)(9 53)(11 28)(12 29)(14 31)(15 32)(17 34)(18 35)(20 37)(21 38)(23 40)(24 41)(26 43)(27 44)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
(2 27)(3 26)(4 25)(5 24)(6 23)(7 22)(8 21)(9 20)(10 19)(11 18)(12 17)(13 16)(14 15)(28 35)(29 34)(30 33)(31 32)(36 54)(37 53)(38 52)(39 51)(40 50)(41 49)(42 48)(43 47)(44 46)

G:=sub<Sym(54)| (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,41)(25,42)(26,43)(27,44), (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,31,34,37,40,43,46,49,52)(29,32,35,38,41,44,47,50,53)(30,33,36,39,42,45,48,51,54), (1,45)(2,46)(4,48)(5,49)(7,51)(8,52)(10,54)(11,28)(13,30)(14,31)(16,33)(17,34)(19,36)(20,37)(22,39)(23,40)(25,42)(26,43), (2,46)(3,47)(5,49)(6,50)(8,52)(9,53)(11,28)(12,29)(14,31)(15,32)(17,34)(18,35)(20,37)(21,38)(23,40)(24,41)(26,43)(27,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15)(28,35)(29,34)(30,33)(31,32)(36,54)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(43,47)(44,46)>;

G:=Group( (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,41)(25,42)(26,43)(27,44), (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,31,34,37,40,43,46,49,52)(29,32,35,38,41,44,47,50,53)(30,33,36,39,42,45,48,51,54), (1,45)(2,46)(4,48)(5,49)(7,51)(8,52)(10,54)(11,28)(13,30)(14,31)(16,33)(17,34)(19,36)(20,37)(22,39)(23,40)(25,42)(26,43), (2,46)(3,47)(5,49)(6,50)(8,52)(9,53)(11,28)(12,29)(14,31)(15,32)(17,34)(18,35)(20,37)(21,38)(23,40)(24,41)(26,43)(27,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15)(28,35)(29,34)(30,33)(31,32)(36,54)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(43,47)(44,46) );

G=PermutationGroup([[(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,28),(12,29),(13,30),(14,31),(15,32),(16,33),(17,34),(18,35),(19,36),(20,37),(21,38),(22,39),(23,40),(24,41),(25,42),(26,43),(27,44)], [(1,4,7,10,13,16,19,22,25),(2,5,8,11,14,17,20,23,26),(3,6,9,12,15,18,21,24,27),(28,31,34,37,40,43,46,49,52),(29,32,35,38,41,44,47,50,53),(30,33,36,39,42,45,48,51,54)], [(1,45),(2,46),(4,48),(5,49),(7,51),(8,52),(10,54),(11,28),(13,30),(14,31),(16,33),(17,34),(19,36),(20,37),(22,39),(23,40),(25,42),(26,43)], [(2,46),(3,47),(5,49),(6,50),(8,52),(9,53),(11,28),(12,29),(14,31),(15,32),(17,34),(18,35),(20,37),(21,38),(23,40),(24,41),(26,43),(27,44)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)], [(2,27),(3,26),(4,25),(5,24),(6,23),(7,22),(8,21),(9,20),(10,19),(11,18),(12,17),(13,16),(14,15),(28,35),(29,34),(30,33),(31,32),(36,54),(37,53),(38,52),(39,51),(40,50),(41,49),(42,48),(43,47),(44,46)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B6A6B6C9A9B9C18A18B18C18D···18I27A···27I54A···54I
order12222234466699918181818···1827···2754···54
size11335454254542662222226···68···88···8

42 irreducible representations

dim111222222336666
type+++++++++++++++
imageC1C2C2S3D6D9D18D27D54S4C2×S4C3.S4C2×C3.S4C9.S4C2×C9.S4
kernelC2×C9.S4C9.S4C2×C9.A4C22×C18C2×C18C22×C6C2×C6C23C22C18C9C6C3C2C1
# reps121113399221133

Matrix representation of C2×C9.S4 in GL5(𝔽109)

1080000
0108000
0010800
0001080
0000108
,
554000
1486000
00100
00010
00001
,
10000
01000
0010800
00010
000108108
,
10000
01000
00100
0001080
001080108
,
8234000
2924000
00010
00108108107
00001
,
10620000
653000
00100
00108108107
00001

G:=sub<GL(5,GF(109))| [108,0,0,0,0,0,108,0,0,0,0,0,108,0,0,0,0,0,108,0,0,0,0,0,108],[5,14,0,0,0,54,86,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,108,0,0,0,0,0,1,108,0,0,0,0,108],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,108,0,0,0,108,0,0,0,0,0,108],[82,29,0,0,0,34,24,0,0,0,0,0,0,108,0,0,0,1,108,0,0,0,0,107,1],[106,65,0,0,0,20,3,0,0,0,0,0,1,108,0,0,0,0,108,0,0,0,0,107,1] >;

C2×C9.S4 in GAP, Magma, Sage, TeX

C_2\times C_9.S_4
% in TeX

G:=Group("C2xC9.S4");
// GroupNames label

G:=SmallGroup(432,224);
// by ID

G=gap.SmallGroup(432,224);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-3,-2,2,422,331,1683,192,2524,9077,2287,5298,3989]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^9=c^2=d^2=f^2=1,e^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=b^-1*e^2>;
// generators/relations

׿
×
𝔽