Copied to
clipboard

G = C2×C4⋊D28order 448 = 26·7

Direct product of C2 and C4⋊D28

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C4⋊D28, C43(C2×D28), C284(C2×D4), (C2×C28)⋊8D4, C4⋊C438D14, D142(C2×D4), (C2×C4)⋊10D28, C142(C4⋊D4), (C22×D7)⋊10D4, (C22×D28)⋊7C2, C14.9(C22×D4), D14⋊C450C22, (C2×D28)⋊45C22, (C2×C14).50C24, C22.67(C2×D28), C2.11(C22×D28), C22.133(D4×D7), (C2×C28).487C23, (C22×C4).360D14, C22.84(C23×D7), C23.328(C22×D7), (C22×C14).399C23, (C22×C28).217C22, C22.36(Q82D7), (C2×Dic7).188C23, (C23×D7).100C22, (C22×D7).156C23, (C22×Dic7).213C22, C72(C2×C4⋊D4), C2.15(C2×D4×D7), (C2×C4⋊C4)⋊15D7, (C14×C4⋊C4)⋊12C2, (D7×C22×C4)⋊1C2, (C2×C4×D7)⋊55C22, (C2×D14⋊C4)⋊20C2, (C7×C4⋊C4)⋊46C22, C2.7(C2×Q82D7), C14.109(C2×C4○D4), (C2×C14).174(C2×D4), (C2×C4).141(C22×D7), (C2×C14).197(C4○D4), SmallGroup(448,959)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C2×C4⋊D28
C1C7C14C2×C14C22×D7C23×D7D7×C22×C4 — C2×C4⋊D28
C7C2×C14 — C2×C4⋊D28
C1C23C2×C4⋊C4

Generators and relations for C2×C4⋊D28
 G = < a,b,c,d | a2=b28=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b15, dbd=b-1, dcd=c-1 >

Subgroups: 2500 in 426 conjugacy classes, 135 normal (21 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C2×C22⋊C4, C2×C4⋊C4, C4⋊D4, C23×C4, C22×D4, C4×D7, D28, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×D7, C22×D7, C22×C14, C2×C4⋊D4, D14⋊C4, C7×C4⋊C4, C2×C4×D7, C2×C4×D7, C2×D28, C2×D28, C22×Dic7, C22×C28, C22×C28, C23×D7, C23×D7, C4⋊D28, C2×D14⋊C4, C14×C4⋊C4, D7×C22×C4, C22×D28, C22×D28, C2×C4⋊D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, C24, D14, C4⋊D4, C22×D4, C2×C4○D4, D28, C22×D7, C2×C4⋊D4, C2×D28, D4×D7, Q82D7, C23×D7, C4⋊D28, C22×D28, C2×D4×D7, C2×Q82D7, C2×C4⋊D28

Smallest permutation representation of C2×C4⋊D28
On 224 points
Generators in S224
(1 223)(2 224)(3 197)(4 198)(5 199)(6 200)(7 201)(8 202)(9 203)(10 204)(11 205)(12 206)(13 207)(14 208)(15 209)(16 210)(17 211)(18 212)(19 213)(20 214)(21 215)(22 216)(23 217)(24 218)(25 219)(26 220)(27 221)(28 222)(29 194)(30 195)(31 196)(32 169)(33 170)(34 171)(35 172)(36 173)(37 174)(38 175)(39 176)(40 177)(41 178)(42 179)(43 180)(44 181)(45 182)(46 183)(47 184)(48 185)(49 186)(50 187)(51 188)(52 189)(53 190)(54 191)(55 192)(56 193)(57 125)(58 126)(59 127)(60 128)(61 129)(62 130)(63 131)(64 132)(65 133)(66 134)(67 135)(68 136)(69 137)(70 138)(71 139)(72 140)(73 113)(74 114)(75 115)(76 116)(77 117)(78 118)(79 119)(80 120)(81 121)(82 122)(83 123)(84 124)(85 159)(86 160)(87 161)(88 162)(89 163)(90 164)(91 165)(92 166)(93 167)(94 168)(95 141)(96 142)(97 143)(98 144)(99 145)(100 146)(101 147)(102 148)(103 149)(104 150)(105 151)(106 152)(107 153)(108 154)(109 155)(110 156)(111 157)(112 158)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 185 153 132)(2 172 154 119)(3 187 155 134)(4 174 156 121)(5 189 157 136)(6 176 158 123)(7 191 159 138)(8 178 160 125)(9 193 161 140)(10 180 162 127)(11 195 163 114)(12 182 164 129)(13 169 165 116)(14 184 166 131)(15 171 167 118)(16 186 168 133)(17 173 141 120)(18 188 142 135)(19 175 143 122)(20 190 144 137)(21 177 145 124)(22 192 146 139)(23 179 147 126)(24 194 148 113)(25 181 149 128)(26 196 150 115)(27 183 151 130)(28 170 152 117)(29 102 73 218)(30 89 74 205)(31 104 75 220)(32 91 76 207)(33 106 77 222)(34 93 78 209)(35 108 79 224)(36 95 80 211)(37 110 81 198)(38 97 82 213)(39 112 83 200)(40 99 84 215)(41 86 57 202)(42 101 58 217)(43 88 59 204)(44 103 60 219)(45 90 61 206)(46 105 62 221)(47 92 63 208)(48 107 64 223)(49 94 65 210)(50 109 66 197)(51 96 67 212)(52 111 68 199)(53 98 69 214)(54 85 70 201)(55 100 71 216)(56 87 72 203)
(1 132)(2 131)(3 130)(4 129)(5 128)(6 127)(7 126)(8 125)(9 124)(10 123)(11 122)(12 121)(13 120)(14 119)(15 118)(16 117)(17 116)(18 115)(19 114)(20 113)(21 140)(22 139)(23 138)(24 137)(25 136)(26 135)(27 134)(28 133)(29 98)(30 97)(31 96)(32 95)(33 94)(34 93)(35 92)(36 91)(37 90)(38 89)(39 88)(40 87)(41 86)(42 85)(43 112)(44 111)(45 110)(46 109)(47 108)(48 107)(49 106)(50 105)(51 104)(52 103)(53 102)(54 101)(55 100)(56 99)(57 202)(58 201)(59 200)(60 199)(61 198)(62 197)(63 224)(64 223)(65 222)(66 221)(67 220)(68 219)(69 218)(70 217)(71 216)(72 215)(73 214)(74 213)(75 212)(76 211)(77 210)(78 209)(79 208)(80 207)(81 206)(82 205)(83 204)(84 203)(141 169)(142 196)(143 195)(144 194)(145 193)(146 192)(147 191)(148 190)(149 189)(150 188)(151 187)(152 186)(153 185)(154 184)(155 183)(156 182)(157 181)(158 180)(159 179)(160 178)(161 177)(162 176)(163 175)(164 174)(165 173)(166 172)(167 171)(168 170)

G:=sub<Sym(224)| (1,223)(2,224)(3,197)(4,198)(5,199)(6,200)(7,201)(8,202)(9,203)(10,204)(11,205)(12,206)(13,207)(14,208)(15,209)(16,210)(17,211)(18,212)(19,213)(20,214)(21,215)(22,216)(23,217)(24,218)(25,219)(26,220)(27,221)(28,222)(29,194)(30,195)(31,196)(32,169)(33,170)(34,171)(35,172)(36,173)(37,174)(38,175)(39,176)(40,177)(41,178)(42,179)(43,180)(44,181)(45,182)(46,183)(47,184)(48,185)(49,186)(50,187)(51,188)(52,189)(53,190)(54,191)(55,192)(56,193)(57,125)(58,126)(59,127)(60,128)(61,129)(62,130)(63,131)(64,132)(65,133)(66,134)(67,135)(68,136)(69,137)(70,138)(71,139)(72,140)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,159)(86,160)(87,161)(88,162)(89,163)(90,164)(91,165)(92,166)(93,167)(94,168)(95,141)(96,142)(97,143)(98,144)(99,145)(100,146)(101,147)(102,148)(103,149)(104,150)(105,151)(106,152)(107,153)(108,154)(109,155)(110,156)(111,157)(112,158), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,185,153,132)(2,172,154,119)(3,187,155,134)(4,174,156,121)(5,189,157,136)(6,176,158,123)(7,191,159,138)(8,178,160,125)(9,193,161,140)(10,180,162,127)(11,195,163,114)(12,182,164,129)(13,169,165,116)(14,184,166,131)(15,171,167,118)(16,186,168,133)(17,173,141,120)(18,188,142,135)(19,175,143,122)(20,190,144,137)(21,177,145,124)(22,192,146,139)(23,179,147,126)(24,194,148,113)(25,181,149,128)(26,196,150,115)(27,183,151,130)(28,170,152,117)(29,102,73,218)(30,89,74,205)(31,104,75,220)(32,91,76,207)(33,106,77,222)(34,93,78,209)(35,108,79,224)(36,95,80,211)(37,110,81,198)(38,97,82,213)(39,112,83,200)(40,99,84,215)(41,86,57,202)(42,101,58,217)(43,88,59,204)(44,103,60,219)(45,90,61,206)(46,105,62,221)(47,92,63,208)(48,107,64,223)(49,94,65,210)(50,109,66,197)(51,96,67,212)(52,111,68,199)(53,98,69,214)(54,85,70,201)(55,100,71,216)(56,87,72,203), (1,132)(2,131)(3,130)(4,129)(5,128)(6,127)(7,126)(8,125)(9,124)(10,123)(11,122)(12,121)(13,120)(14,119)(15,118)(16,117)(17,116)(18,115)(19,114)(20,113)(21,140)(22,139)(23,138)(24,137)(25,136)(26,135)(27,134)(28,133)(29,98)(30,97)(31,96)(32,95)(33,94)(34,93)(35,92)(36,91)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,112)(44,111)(45,110)(46,109)(47,108)(48,107)(49,106)(50,105)(51,104)(52,103)(53,102)(54,101)(55,100)(56,99)(57,202)(58,201)(59,200)(60,199)(61,198)(62,197)(63,224)(64,223)(65,222)(66,221)(67,220)(68,219)(69,218)(70,217)(71,216)(72,215)(73,214)(74,213)(75,212)(76,211)(77,210)(78,209)(79,208)(80,207)(81,206)(82,205)(83,204)(84,203)(141,169)(142,196)(143,195)(144,194)(145,193)(146,192)(147,191)(148,190)(149,189)(150,188)(151,187)(152,186)(153,185)(154,184)(155,183)(156,182)(157,181)(158,180)(159,179)(160,178)(161,177)(162,176)(163,175)(164,174)(165,173)(166,172)(167,171)(168,170)>;

G:=Group( (1,223)(2,224)(3,197)(4,198)(5,199)(6,200)(7,201)(8,202)(9,203)(10,204)(11,205)(12,206)(13,207)(14,208)(15,209)(16,210)(17,211)(18,212)(19,213)(20,214)(21,215)(22,216)(23,217)(24,218)(25,219)(26,220)(27,221)(28,222)(29,194)(30,195)(31,196)(32,169)(33,170)(34,171)(35,172)(36,173)(37,174)(38,175)(39,176)(40,177)(41,178)(42,179)(43,180)(44,181)(45,182)(46,183)(47,184)(48,185)(49,186)(50,187)(51,188)(52,189)(53,190)(54,191)(55,192)(56,193)(57,125)(58,126)(59,127)(60,128)(61,129)(62,130)(63,131)(64,132)(65,133)(66,134)(67,135)(68,136)(69,137)(70,138)(71,139)(72,140)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,159)(86,160)(87,161)(88,162)(89,163)(90,164)(91,165)(92,166)(93,167)(94,168)(95,141)(96,142)(97,143)(98,144)(99,145)(100,146)(101,147)(102,148)(103,149)(104,150)(105,151)(106,152)(107,153)(108,154)(109,155)(110,156)(111,157)(112,158), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,185,153,132)(2,172,154,119)(3,187,155,134)(4,174,156,121)(5,189,157,136)(6,176,158,123)(7,191,159,138)(8,178,160,125)(9,193,161,140)(10,180,162,127)(11,195,163,114)(12,182,164,129)(13,169,165,116)(14,184,166,131)(15,171,167,118)(16,186,168,133)(17,173,141,120)(18,188,142,135)(19,175,143,122)(20,190,144,137)(21,177,145,124)(22,192,146,139)(23,179,147,126)(24,194,148,113)(25,181,149,128)(26,196,150,115)(27,183,151,130)(28,170,152,117)(29,102,73,218)(30,89,74,205)(31,104,75,220)(32,91,76,207)(33,106,77,222)(34,93,78,209)(35,108,79,224)(36,95,80,211)(37,110,81,198)(38,97,82,213)(39,112,83,200)(40,99,84,215)(41,86,57,202)(42,101,58,217)(43,88,59,204)(44,103,60,219)(45,90,61,206)(46,105,62,221)(47,92,63,208)(48,107,64,223)(49,94,65,210)(50,109,66,197)(51,96,67,212)(52,111,68,199)(53,98,69,214)(54,85,70,201)(55,100,71,216)(56,87,72,203), (1,132)(2,131)(3,130)(4,129)(5,128)(6,127)(7,126)(8,125)(9,124)(10,123)(11,122)(12,121)(13,120)(14,119)(15,118)(16,117)(17,116)(18,115)(19,114)(20,113)(21,140)(22,139)(23,138)(24,137)(25,136)(26,135)(27,134)(28,133)(29,98)(30,97)(31,96)(32,95)(33,94)(34,93)(35,92)(36,91)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,112)(44,111)(45,110)(46,109)(47,108)(48,107)(49,106)(50,105)(51,104)(52,103)(53,102)(54,101)(55,100)(56,99)(57,202)(58,201)(59,200)(60,199)(61,198)(62,197)(63,224)(64,223)(65,222)(66,221)(67,220)(68,219)(69,218)(70,217)(71,216)(72,215)(73,214)(74,213)(75,212)(76,211)(77,210)(78,209)(79,208)(80,207)(81,206)(82,205)(83,204)(84,203)(141,169)(142,196)(143,195)(144,194)(145,193)(146,192)(147,191)(148,190)(149,189)(150,188)(151,187)(152,186)(153,185)(154,184)(155,183)(156,182)(157,181)(158,180)(159,179)(160,178)(161,177)(162,176)(163,175)(164,174)(165,173)(166,172)(167,171)(168,170) );

G=PermutationGroup([[(1,223),(2,224),(3,197),(4,198),(5,199),(6,200),(7,201),(8,202),(9,203),(10,204),(11,205),(12,206),(13,207),(14,208),(15,209),(16,210),(17,211),(18,212),(19,213),(20,214),(21,215),(22,216),(23,217),(24,218),(25,219),(26,220),(27,221),(28,222),(29,194),(30,195),(31,196),(32,169),(33,170),(34,171),(35,172),(36,173),(37,174),(38,175),(39,176),(40,177),(41,178),(42,179),(43,180),(44,181),(45,182),(46,183),(47,184),(48,185),(49,186),(50,187),(51,188),(52,189),(53,190),(54,191),(55,192),(56,193),(57,125),(58,126),(59,127),(60,128),(61,129),(62,130),(63,131),(64,132),(65,133),(66,134),(67,135),(68,136),(69,137),(70,138),(71,139),(72,140),(73,113),(74,114),(75,115),(76,116),(77,117),(78,118),(79,119),(80,120),(81,121),(82,122),(83,123),(84,124),(85,159),(86,160),(87,161),(88,162),(89,163),(90,164),(91,165),(92,166),(93,167),(94,168),(95,141),(96,142),(97,143),(98,144),(99,145),(100,146),(101,147),(102,148),(103,149),(104,150),(105,151),(106,152),(107,153),(108,154),(109,155),(110,156),(111,157),(112,158)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,185,153,132),(2,172,154,119),(3,187,155,134),(4,174,156,121),(5,189,157,136),(6,176,158,123),(7,191,159,138),(8,178,160,125),(9,193,161,140),(10,180,162,127),(11,195,163,114),(12,182,164,129),(13,169,165,116),(14,184,166,131),(15,171,167,118),(16,186,168,133),(17,173,141,120),(18,188,142,135),(19,175,143,122),(20,190,144,137),(21,177,145,124),(22,192,146,139),(23,179,147,126),(24,194,148,113),(25,181,149,128),(26,196,150,115),(27,183,151,130),(28,170,152,117),(29,102,73,218),(30,89,74,205),(31,104,75,220),(32,91,76,207),(33,106,77,222),(34,93,78,209),(35,108,79,224),(36,95,80,211),(37,110,81,198),(38,97,82,213),(39,112,83,200),(40,99,84,215),(41,86,57,202),(42,101,58,217),(43,88,59,204),(44,103,60,219),(45,90,61,206),(46,105,62,221),(47,92,63,208),(48,107,64,223),(49,94,65,210),(50,109,66,197),(51,96,67,212),(52,111,68,199),(53,98,69,214),(54,85,70,201),(55,100,71,216),(56,87,72,203)], [(1,132),(2,131),(3,130),(4,129),(5,128),(6,127),(7,126),(8,125),(9,124),(10,123),(11,122),(12,121),(13,120),(14,119),(15,118),(16,117),(17,116),(18,115),(19,114),(20,113),(21,140),(22,139),(23,138),(24,137),(25,136),(26,135),(27,134),(28,133),(29,98),(30,97),(31,96),(32,95),(33,94),(34,93),(35,92),(36,91),(37,90),(38,89),(39,88),(40,87),(41,86),(42,85),(43,112),(44,111),(45,110),(46,109),(47,108),(48,107),(49,106),(50,105),(51,104),(52,103),(53,102),(54,101),(55,100),(56,99),(57,202),(58,201),(59,200),(60,199),(61,198),(62,197),(63,224),(64,223),(65,222),(66,221),(67,220),(68,219),(69,218),(70,217),(71,216),(72,215),(73,214),(74,213),(75,212),(76,211),(77,210),(78,209),(79,208),(80,207),(81,206),(82,205),(83,204),(84,203),(141,169),(142,196),(143,195),(144,194),(145,193),(146,192),(147,191),(148,190),(149,189),(150,188),(151,187),(152,186),(153,185),(154,184),(155,183),(156,182),(157,181),(158,180),(159,179),(160,178),(161,177),(162,176),(163,175),(164,174),(165,173),(166,172),(167,171),(168,170)]])

88 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M2N2O4A4B4C4D4E4F4G4H4I4J4K4L7A7B7C14A···14U28A···28AJ
order12···22222222244444444444477714···1428···28
size11···1141414142828282822224444141414142222···24···4

88 irreducible representations

dim111111222222244
type++++++++++++++
imageC1C2C2C2C2C2D4D4D7C4○D4D14D14D28D4×D7Q82D7
kernelC2×C4⋊D28C4⋊D28C2×D14⋊C4C14×C4⋊C4D7×C22×C4C22×D28C2×C28C22×D7C2×C4⋊C4C2×C14C4⋊C4C22×C4C2×C4C22C22
# reps18211344341292466

Matrix representation of C2×C4⋊D28 in GL6(𝔽29)

2800000
0280000
001000
000100
0000280
0000028
,
2130000
2610000
00271800
0011200
0000120
0000017
,
100000
010000
000100
001000
000001
0000280
,
100000
3280000
000100
001000
000001
000010

G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[21,26,0,0,0,0,3,1,0,0,0,0,0,0,27,11,0,0,0,0,18,2,0,0,0,0,0,0,12,0,0,0,0,0,0,17],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,1,0],[1,3,0,0,0,0,0,28,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C2×C4⋊D28 in GAP, Magma, Sage, TeX

C_2\times C_4\rtimes D_{28}
% in TeX

G:=Group("C2xC4:D28");
// GroupNames label

G:=SmallGroup(448,959);
// by ID

G=gap.SmallGroup(448,959);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,184,675,297,80,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^28=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^15,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽