Copied to
clipboard

G = C2xC4xD7order 112 = 24·7

Direct product of C2xC4 and D7

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2xC4xD7, C28:3C22, C14.2C23, C22.9D14, Dic7:3C22, D14.4C22, C4o(C4xD7), (C2xC28):5C2, C14:1(C2xC4), C7:1(C22xC4), (C2xC4)oDic7, C4o(C2xDic7), (C2xDic7):5C2, C2.1(C22xD7), (C2xC14).9C22, (C22xD7).2C2, (C2xC4)o(C2xDic7), SmallGroup(112,28)

Series: Derived Chief Lower central Upper central

C1C7 — C2xC4xD7
C1C7C14D14C22xD7 — C2xC4xD7
C7 — C2xC4xD7
C1C2xC4

Generators and relations for C2xC4xD7
 G = < a,b,c,d | a2=b4=c7=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 168 in 54 conjugacy classes, 35 normal (11 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C2xC4, C2xC4, C23, D7, C14, C14, C22xC4, Dic7, C28, D14, C2xC14, C4xD7, C2xDic7, C2xC28, C22xD7, C2xC4xD7
Quotients: C1, C2, C4, C22, C2xC4, C23, D7, C22xC4, D14, C4xD7, C22xD7, C2xC4xD7

Smallest permutation representation of C2xC4xD7
On 56 points
Generators in S56
(1 34)(2 35)(3 29)(4 30)(5 31)(6 32)(7 33)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)
(1 27 13 20)(2 28 14 21)(3 22 8 15)(4 23 9 16)(5 24 10 17)(6 25 11 18)(7 26 12 19)(29 50 36 43)(30 51 37 44)(31 52 38 45)(32 53 39 46)(33 54 40 47)(34 55 41 48)(35 56 42 49)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 31)(32 35)(33 34)(36 38)(39 42)(40 41)(43 45)(46 49)(47 48)(50 52)(53 56)(54 55)

G:=sub<Sym(56)| (1,34)(2,35)(3,29)(4,30)(5,31)(6,32)(7,33)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56), (1,27,13,20)(2,28,14,21)(3,22,8,15)(4,23,9,16)(5,24,10,17)(6,25,11,18)(7,26,12,19)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)(43,45)(46,49)(47,48)(50,52)(53,56)(54,55)>;

G:=Group( (1,34)(2,35)(3,29)(4,30)(5,31)(6,32)(7,33)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56), (1,27,13,20)(2,28,14,21)(3,22,8,15)(4,23,9,16)(5,24,10,17)(6,25,11,18)(7,26,12,19)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)(43,45)(46,49)(47,48)(50,52)(53,56)(54,55) );

G=PermutationGroup([[(1,34),(2,35),(3,29),(4,30),(5,31),(6,32),(7,33),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56)], [(1,27,13,20),(2,28,14,21),(3,22,8,15),(4,23,9,16),(5,24,10,17),(6,25,11,18),(7,26,12,19),(29,50,36,43),(30,51,37,44),(31,52,38,45),(32,53,39,46),(33,54,40,47),(34,55,41,48),(35,56,42,49)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,31),(32,35),(33,34),(36,38),(39,42),(40,41),(43,45),(46,49),(47,48),(50,52),(53,56),(54,55)]])

C2xC4xD7 is a maximal subgroup of
D14:C8  C42:D7  Dic7:4D4  D14.D4  D14:D4  C4:C4:7D7  D28:C4  D14.5D4  C4:D28  D14:Q8  D14:2Q8  C28:2D4  D14:3Q8
C2xC4xD7 is a maximal quotient of
C42:D7  C23.11D14  Dic7:4D4  Dic7:3Q8  C4:C4:7D7  D28:C4  D28.2C4  D28.C4

40 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H7A7B7C14A···14I28A···28L
order122222224444444477714···1428···28
size11117777111177772222···22···2

40 irreducible representations

dim1111112222
type++++++++
imageC1C2C2C2C2C4D7D14D14C4xD7
kernelC2xC4xD7C4xD7C2xDic7C2xC28C22xD7D14C2xC4C4C22C2
# reps14111836312

Matrix representation of C2xC4xD7 in GL4(F29) generated by

28000
02800
0010
0001
,
12000
02800
0010
0001
,
1000
0100
00281
00208
,
28000
02800
00280
00201
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,28,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,28,20,0,0,1,8],[28,0,0,0,0,28,0,0,0,0,28,20,0,0,0,1] >;

C2xC4xD7 in GAP, Magma, Sage, TeX

C_2\times C_4\times D_7
% in TeX

G:=Group("C2xC4xD7");
// GroupNames label

G:=SmallGroup(112,28);
// by ID

G=gap.SmallGroup(112,28);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-7,42,2404]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^7=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<