Copied to
clipboard

G = C567D4order 448 = 26·7

7th semidirect product of C56 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C567D4, C82D28, C4.Q83D7, C72(C82D4), (C2×D56)⋊24C2, C4⋊D286C2, C4⋊C4.39D14, C4.51(C2×D28), (C2×C8).61D14, C28.131(C2×D4), C14.D816C2, C28.30(C4○D4), C4.4(Q82D7), (C2×Dic7).42D4, (C22×D7).24D4, C22.217(D4×D7), C2.17(C4⋊D28), C14.44(C4⋊D4), C2.22(D56⋊C2), C14.70(C8⋊C22), (C2×C28).281C23, (C2×C56).110C22, (C2×D28).75C22, (C7×C4.Q8)⋊3C2, (C2×C8⋊D7)⋊2C2, (C2×C7⋊C8).58C22, (C2×C4×D7).33C22, (C2×C14).286(C2×D4), (C7×C4⋊C4).74C22, (C2×C4).384(C22×D7), SmallGroup(448,399)

Series: Derived Chief Lower central Upper central

C1C2×C28 — C567D4
C1C7C14C2×C14C2×C28C2×C4×D7C2×C8⋊D7 — C567D4
C7C14C2×C28 — C567D4
C1C22C2×C4C4.Q8

Generators and relations for C567D4
 G = < a,b,c | a56=b4=c2=1, bab-1=a43, cac=a-1, cbc=b-1 >

Subgroups: 972 in 130 conjugacy classes, 41 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, C23, D7, C14, C14, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, C22×C4, C2×D4, Dic7, C28, C28, D14, C2×C14, D4⋊C4, C4.Q8, C4⋊D4, C2×M4(2), C2×D8, C7⋊C8, C56, C4×D7, D28, C2×Dic7, C2×C28, C2×C28, C22×D7, C22×D7, C82D4, C8⋊D7, D56, C2×C7⋊C8, D14⋊C4, C7×C4⋊C4, C2×C56, C2×C4×D7, C2×D28, C2×D28, C14.D8, C7×C4.Q8, C4⋊D28, C2×C8⋊D7, C2×D56, C567D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, C8⋊C22, D28, C22×D7, C82D4, C2×D28, D4×D7, Q82D7, C4⋊D28, D56⋊C2, C567D4

Smallest permutation representation of C567D4
On 224 points
Generators in S224
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 71 192 141)(2 58 193 128)(3 101 194 115)(4 88 195 158)(5 75 196 145)(6 62 197 132)(7 105 198 119)(8 92 199 162)(9 79 200 149)(10 66 201 136)(11 109 202 123)(12 96 203 166)(13 83 204 153)(14 70 205 140)(15 57 206 127)(16 100 207 114)(17 87 208 157)(18 74 209 144)(19 61 210 131)(20 104 211 118)(21 91 212 161)(22 78 213 148)(23 65 214 135)(24 108 215 122)(25 95 216 165)(26 82 217 152)(27 69 218 139)(28 112 219 126)(29 99 220 113)(30 86 221 156)(31 73 222 143)(32 60 223 130)(33 103 224 117)(34 90 169 160)(35 77 170 147)(36 64 171 134)(37 107 172 121)(38 94 173 164)(39 81 174 151)(40 68 175 138)(41 111 176 125)(42 98 177 168)(43 85 178 155)(44 72 179 142)(45 59 180 129)(46 102 181 116)(47 89 182 159)(48 76 183 146)(49 63 184 133)(50 106 185 120)(51 93 186 163)(52 80 187 150)(53 67 188 137)(54 110 189 124)(55 97 190 167)(56 84 191 154)
(1 141)(2 140)(3 139)(4 138)(5 137)(6 136)(7 135)(8 134)(9 133)(10 132)(11 131)(12 130)(13 129)(14 128)(15 127)(16 126)(17 125)(18 124)(19 123)(20 122)(21 121)(22 120)(23 119)(24 118)(25 117)(26 116)(27 115)(28 114)(29 113)(30 168)(31 167)(32 166)(33 165)(34 164)(35 163)(36 162)(37 161)(38 160)(39 159)(40 158)(41 157)(42 156)(43 155)(44 154)(45 153)(46 152)(47 151)(48 150)(49 149)(50 148)(51 147)(52 146)(53 145)(54 144)(55 143)(56 142)(57 206)(58 205)(59 204)(60 203)(61 202)(62 201)(63 200)(64 199)(65 198)(66 197)(67 196)(68 195)(69 194)(70 193)(71 192)(72 191)(73 190)(74 189)(75 188)(76 187)(77 186)(78 185)(79 184)(80 183)(81 182)(82 181)(83 180)(84 179)(85 178)(86 177)(87 176)(88 175)(89 174)(90 173)(91 172)(92 171)(93 170)(94 169)(95 224)(96 223)(97 222)(98 221)(99 220)(100 219)(101 218)(102 217)(103 216)(104 215)(105 214)(106 213)(107 212)(108 211)(109 210)(110 209)(111 208)(112 207)

G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,71,192,141)(2,58,193,128)(3,101,194,115)(4,88,195,158)(5,75,196,145)(6,62,197,132)(7,105,198,119)(8,92,199,162)(9,79,200,149)(10,66,201,136)(11,109,202,123)(12,96,203,166)(13,83,204,153)(14,70,205,140)(15,57,206,127)(16,100,207,114)(17,87,208,157)(18,74,209,144)(19,61,210,131)(20,104,211,118)(21,91,212,161)(22,78,213,148)(23,65,214,135)(24,108,215,122)(25,95,216,165)(26,82,217,152)(27,69,218,139)(28,112,219,126)(29,99,220,113)(30,86,221,156)(31,73,222,143)(32,60,223,130)(33,103,224,117)(34,90,169,160)(35,77,170,147)(36,64,171,134)(37,107,172,121)(38,94,173,164)(39,81,174,151)(40,68,175,138)(41,111,176,125)(42,98,177,168)(43,85,178,155)(44,72,179,142)(45,59,180,129)(46,102,181,116)(47,89,182,159)(48,76,183,146)(49,63,184,133)(50,106,185,120)(51,93,186,163)(52,80,187,150)(53,67,188,137)(54,110,189,124)(55,97,190,167)(56,84,191,154), (1,141)(2,140)(3,139)(4,138)(5,137)(6,136)(7,135)(8,134)(9,133)(10,132)(11,131)(12,130)(13,129)(14,128)(15,127)(16,126)(17,125)(18,124)(19,123)(20,122)(21,121)(22,120)(23,119)(24,118)(25,117)(26,116)(27,115)(28,114)(29,113)(30,168)(31,167)(32,166)(33,165)(34,164)(35,163)(36,162)(37,161)(38,160)(39,159)(40,158)(41,157)(42,156)(43,155)(44,154)(45,153)(46,152)(47,151)(48,150)(49,149)(50,148)(51,147)(52,146)(53,145)(54,144)(55,143)(56,142)(57,206)(58,205)(59,204)(60,203)(61,202)(62,201)(63,200)(64,199)(65,198)(66,197)(67,196)(68,195)(69,194)(70,193)(71,192)(72,191)(73,190)(74,189)(75,188)(76,187)(77,186)(78,185)(79,184)(80,183)(81,182)(82,181)(83,180)(84,179)(85,178)(86,177)(87,176)(88,175)(89,174)(90,173)(91,172)(92,171)(93,170)(94,169)(95,224)(96,223)(97,222)(98,221)(99,220)(100,219)(101,218)(102,217)(103,216)(104,215)(105,214)(106,213)(107,212)(108,211)(109,210)(110,209)(111,208)(112,207)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,71,192,141)(2,58,193,128)(3,101,194,115)(4,88,195,158)(5,75,196,145)(6,62,197,132)(7,105,198,119)(8,92,199,162)(9,79,200,149)(10,66,201,136)(11,109,202,123)(12,96,203,166)(13,83,204,153)(14,70,205,140)(15,57,206,127)(16,100,207,114)(17,87,208,157)(18,74,209,144)(19,61,210,131)(20,104,211,118)(21,91,212,161)(22,78,213,148)(23,65,214,135)(24,108,215,122)(25,95,216,165)(26,82,217,152)(27,69,218,139)(28,112,219,126)(29,99,220,113)(30,86,221,156)(31,73,222,143)(32,60,223,130)(33,103,224,117)(34,90,169,160)(35,77,170,147)(36,64,171,134)(37,107,172,121)(38,94,173,164)(39,81,174,151)(40,68,175,138)(41,111,176,125)(42,98,177,168)(43,85,178,155)(44,72,179,142)(45,59,180,129)(46,102,181,116)(47,89,182,159)(48,76,183,146)(49,63,184,133)(50,106,185,120)(51,93,186,163)(52,80,187,150)(53,67,188,137)(54,110,189,124)(55,97,190,167)(56,84,191,154), (1,141)(2,140)(3,139)(4,138)(5,137)(6,136)(7,135)(8,134)(9,133)(10,132)(11,131)(12,130)(13,129)(14,128)(15,127)(16,126)(17,125)(18,124)(19,123)(20,122)(21,121)(22,120)(23,119)(24,118)(25,117)(26,116)(27,115)(28,114)(29,113)(30,168)(31,167)(32,166)(33,165)(34,164)(35,163)(36,162)(37,161)(38,160)(39,159)(40,158)(41,157)(42,156)(43,155)(44,154)(45,153)(46,152)(47,151)(48,150)(49,149)(50,148)(51,147)(52,146)(53,145)(54,144)(55,143)(56,142)(57,206)(58,205)(59,204)(60,203)(61,202)(62,201)(63,200)(64,199)(65,198)(66,197)(67,196)(68,195)(69,194)(70,193)(71,192)(72,191)(73,190)(74,189)(75,188)(76,187)(77,186)(78,185)(79,184)(80,183)(81,182)(82,181)(83,180)(84,179)(85,178)(86,177)(87,176)(88,175)(89,174)(90,173)(91,172)(92,171)(93,170)(94,169)(95,224)(96,223)(97,222)(98,221)(99,220)(100,219)(101,218)(102,217)(103,216)(104,215)(105,214)(106,213)(107,212)(108,211)(109,210)(110,209)(111,208)(112,207) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,71,192,141),(2,58,193,128),(3,101,194,115),(4,88,195,158),(5,75,196,145),(6,62,197,132),(7,105,198,119),(8,92,199,162),(9,79,200,149),(10,66,201,136),(11,109,202,123),(12,96,203,166),(13,83,204,153),(14,70,205,140),(15,57,206,127),(16,100,207,114),(17,87,208,157),(18,74,209,144),(19,61,210,131),(20,104,211,118),(21,91,212,161),(22,78,213,148),(23,65,214,135),(24,108,215,122),(25,95,216,165),(26,82,217,152),(27,69,218,139),(28,112,219,126),(29,99,220,113),(30,86,221,156),(31,73,222,143),(32,60,223,130),(33,103,224,117),(34,90,169,160),(35,77,170,147),(36,64,171,134),(37,107,172,121),(38,94,173,164),(39,81,174,151),(40,68,175,138),(41,111,176,125),(42,98,177,168),(43,85,178,155),(44,72,179,142),(45,59,180,129),(46,102,181,116),(47,89,182,159),(48,76,183,146),(49,63,184,133),(50,106,185,120),(51,93,186,163),(52,80,187,150),(53,67,188,137),(54,110,189,124),(55,97,190,167),(56,84,191,154)], [(1,141),(2,140),(3,139),(4,138),(5,137),(6,136),(7,135),(8,134),(9,133),(10,132),(11,131),(12,130),(13,129),(14,128),(15,127),(16,126),(17,125),(18,124),(19,123),(20,122),(21,121),(22,120),(23,119),(24,118),(25,117),(26,116),(27,115),(28,114),(29,113),(30,168),(31,167),(32,166),(33,165),(34,164),(35,163),(36,162),(37,161),(38,160),(39,159),(40,158),(41,157),(42,156),(43,155),(44,154),(45,153),(46,152),(47,151),(48,150),(49,149),(50,148),(51,147),(52,146),(53,145),(54,144),(55,143),(56,142),(57,206),(58,205),(59,204),(60,203),(61,202),(62,201),(63,200),(64,199),(65,198),(66,197),(67,196),(68,195),(69,194),(70,193),(71,192),(72,191),(73,190),(74,189),(75,188),(76,187),(77,186),(78,185),(79,184),(80,183),(81,182),(82,181),(83,180),(84,179),(85,178),(86,177),(87,176),(88,175),(89,174),(90,173),(91,172),(92,171),(93,170),(94,169),(95,224),(96,223),(97,222),(98,221),(99,220),(100,219),(101,218),(102,217),(103,216),(104,215),(105,214),(106,213),(107,212),(108,211),(109,210),(110,209),(111,208),(112,207)]])

58 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E7A7B7C8A8B8C8D14A···14I28A···28F28G···28R56A···56L
order122222244444777888814···1428···2828···2856···56
size11112856562288282224428282···24···48···84···4

58 irreducible representations

dim111111222222224444
type+++++++++++++++++
imageC1C2C2C2C2C2D4D4D4D7C4○D4D14D14D28C8⋊C22Q82D7D4×D7D56⋊C2
kernelC567D4C14.D8C7×C4.Q8C4⋊D28C2×C8⋊D7C2×D56C56C2×Dic7C22×D7C4.Q8C28C4⋊C4C2×C8C8C14C4C22C2
# reps12121121132631223312

Matrix representation of C567D4 in GL8(𝔽113)

01696910000
974522200000
96910970000
222016680000
00000086106
000000798
0000706086106
00005364798
,
00100000
00010000
1120000000
0112000000
0000170220
0000017022
0000280960
0000028096
,
00100000
00241120000
10000000
24112000000
0000170220
0000100964391
0000280960
000065851317

G:=sub<GL(8,GF(113))| [0,97,96,22,0,0,0,0,16,45,91,20,0,0,0,0,96,22,0,16,0,0,0,0,91,20,97,68,0,0,0,0,0,0,0,0,0,0,70,53,0,0,0,0,0,0,60,64,0,0,0,0,86,7,86,7,0,0,0,0,106,98,106,98],[0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,17,0,28,0,0,0,0,0,0,17,0,28,0,0,0,0,22,0,96,0,0,0,0,0,0,22,0,96],[0,0,1,24,0,0,0,0,0,0,0,112,0,0,0,0,1,24,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,0,0,17,100,28,65,0,0,0,0,0,96,0,85,0,0,0,0,22,43,96,13,0,0,0,0,0,91,0,17] >;

C567D4 in GAP, Magma, Sage, TeX

C_{56}\rtimes_7D_4
% in TeX

G:=Group("C56:7D4");
// GroupNames label

G:=SmallGroup(448,399);
// by ID

G=gap.SmallGroup(448,399);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,120,254,555,58,438,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=b^4=c^2=1,b*a*b^-1=a^43,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽