Copied to
clipboard

G = C7⋊C2≀C4order 448 = 26·7

The semidirect product of C7 and C2≀C4 acting via C2≀C4/C23⋊C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C71C2≀C4, C23⋊C41D7, (C2×C28).1D4, (C2×C4).1D28, (C2×D4).1D14, (C23×D7)⋊1C4, C23.D71C4, C23.1(C4×D7), C28.D41C2, (C22×C14).8D4, C23⋊D14.1C2, C14.7(C23⋊C4), (D4×C14).1C22, C23.1(C7⋊D4), C22.8(D14⋊C4), C2.8(C23.1D14), (C7×C23⋊C4)⋊1C2, (C22×C14).1(C2×C4), (C2×C14).1(C22⋊C4), SmallGroup(448,28)

Series: Derived Chief Lower central Upper central

C1C22×C14 — C7⋊C2≀C4
C1C7C14C2×C14C22×C14D4×C14C23⋊D14 — C7⋊C2≀C4
C7C14C2×C14C22×C14 — C7⋊C2≀C4
C1C2C22C2×D4C23⋊C4

Generators and relations for C7⋊C2≀C4
 G = < a,b,c,d,e,f | a7=b2=c2=d2=e2=f4=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bcde, cd=dc, ce=ec, fcf-1=cde, fdf-1=de=ed, ef=fe >

Subgroups: 732 in 94 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C22⋊C4, M4(2), C2×D4, C2×D4, C24, Dic7, C28, D14, C2×C14, C2×C14, C23⋊C4, C4.D4, C22≀C2, C7⋊C8, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C22×D7, C22×C14, C2≀C4, C4.Dic7, D14⋊C4, C23.D7, C7×C22⋊C4, C2×C7⋊D4, D4×C14, C23×D7, C28.D4, C7×C23⋊C4, C23⋊D14, C7⋊C2≀C4
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, D14, C23⋊C4, C4×D7, D28, C7⋊D4, C2≀C4, D14⋊C4, C23.1D14, C7⋊C2≀C4

Smallest permutation representation of C7⋊C2≀C4
On 56 points
Generators in S56
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(2 7)(3 6)(4 5)(8 11)(9 10)(12 14)(15 18)(16 17)(19 21)(22 25)(23 24)(26 28)(29 46)(30 45)(31 44)(32 43)(33 49)(34 48)(35 47)(36 53)(37 52)(38 51)(39 50)(40 56)(41 55)(42 54)
(1 20)(2 21)(3 15)(4 16)(5 17)(6 18)(7 19)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)
(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)
(1 13)(2 14)(3 8)(4 9)(5 10)(6 11)(7 12)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)
(1 34)(2 35)(3 29)(4 30)(5 31)(6 32)(7 33)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 50 22 43)(16 51 23 44)(17 52 24 45)(18 53 25 46)(19 54 26 47)(20 55 27 48)(21 56 28 49)

G:=sub<Sym(56)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (2,7)(3,6)(4,5)(8,11)(9,10)(12,14)(15,18)(16,17)(19,21)(22,25)(23,24)(26,28)(29,46)(30,45)(31,44)(32,43)(33,49)(34,48)(35,47)(36,53)(37,52)(38,51)(39,50)(40,56)(41,55)(42,54), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,34)(2,35)(3,29)(4,30)(5,31)(6,32)(7,33)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (2,7)(3,6)(4,5)(8,11)(9,10)(12,14)(15,18)(16,17)(19,21)(22,25)(23,24)(26,28)(29,46)(30,45)(31,44)(32,43)(33,49)(34,48)(35,47)(36,53)(37,52)(38,51)(39,50)(40,56)(41,55)(42,54), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,34)(2,35)(3,29)(4,30)(5,31)(6,32)(7,33)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(2,7),(3,6),(4,5),(8,11),(9,10),(12,14),(15,18),(16,17),(19,21),(22,25),(23,24),(26,28),(29,46),(30,45),(31,44),(32,43),(33,49),(34,48),(35,47),(36,53),(37,52),(38,51),(39,50),(40,56),(41,55),(42,54)], [(1,20),(2,21),(3,15),(4,16),(5,17),(6,18),(7,19),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56)], [(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56)], [(1,13),(2,14),(3,8),(4,9),(5,10),(6,11),(7,12),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56)], [(1,34),(2,35),(3,29),(4,30),(5,31),(6,32),(7,33),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,50,22,43),(16,51,23,44),(17,52,24,45),(18,53,25,46),(19,54,26,47),(20,55,27,48),(21,56,28,49)]])

46 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D7A7B7C8A8B14A14B14C14D···14L14M14N14O28A···28O
order122222244447778814141414···1414141428···28
size1124428284885622256562224···48888···8

46 irreducible representations

dim11111122222224448
type++++++++++++
imageC1C2C2C2C4C4D4D4D7D14D28C4×D7C7⋊D4C23⋊C4C2≀C4C23.1D14C7⋊C2≀C4
kernelC7⋊C2≀C4C28.D4C7×C23⋊C4C23⋊D14C23.D7C23×D7C2×C28C22×C14C23⋊C4C2×D4C2×C4C23C23C14C7C2C1
# reps11112211336661263

Matrix representation of C7⋊C2≀C4 in GL8(𝔽113)

160000000
0106000000
0010600000
000160000
00001000
00000100
00000010
00000001
,
008500000
00040000
40000000
085000000
00001000
00000100
00000001
00000010
,
00010000
00100000
01000000
10000000
00000100
00001000
00000001
00000010
,
1120000000
0112000000
0011200000
0001120000
00001000
00000100
0000001120
0000000112
,
10000000
01000000
00100000
00010000
0000112000
0000011200
0000001120
0000000112
,
1120000000
0011200000
01000000
00010000
00000010
00000001
00001000
0000011200

G:=sub<GL(8,GF(113))| [16,0,0,0,0,0,0,0,0,106,0,0,0,0,0,0,0,0,106,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,0,4,0,0,0,0,0,0,0,0,85,0,0,0,0,85,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112],[112,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,112,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

C7⋊C2≀C4 in GAP, Magma, Sage, TeX

C_7\rtimes C_2\wr C_4
% in TeX

G:=Group("C7:C2wrC4");
// GroupNames label

G:=SmallGroup(448,28);
// by ID

G=gap.SmallGroup(448,28);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,141,36,422,346,297,851,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^7=b^2=c^2=d^2=e^2=f^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c*d*e,c*d=d*c,c*e=e*c,f*c*f^-1=c*d*e,f*d*f^-1=d*e=e*d,e*f=f*e>;
// generators/relations

׿
×
𝔽