Copied to
clipboard

G = C7×C2≀C4order 448 = 26·7

Direct product of C7 and C2≀C4

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C7×C2≀C4, C242C28, C22⋊C41C28, C23⋊C41C14, (C23×C14)⋊1C4, (C2×C28).17D4, C23.1(C7×D4), C4.D45C14, C23.1(C2×C28), (C22×C14).1D4, C22≀C2.1C14, C14.32(C23⋊C4), (D4×C14).174C22, (C2×C4).1(C7×D4), (C7×C23⋊C4)⋊7C2, (C7×C22⋊C4)⋊3C4, C2.6(C7×C23⋊C4), (C2×D4).1(C2×C14), (C7×C22≀C2).3C2, (C7×C4.D4)⋊12C2, (C22×C14).8(C2×C4), C22.10(C7×C22⋊C4), (C2×C14).73(C22⋊C4), SmallGroup(448,155)

Series: Derived Chief Lower central Upper central

C1C23 — C7×C2≀C4
C1C2C22C23C2×D4D4×C14C7×C23⋊C4 — C7×C2≀C4
C1C2C22C23 — C7×C2≀C4
C1C14C2×C14D4×C14 — C7×C2≀C4

Generators and relations for C7×C2≀C4
 G = < a,b,c,d,e,f | a7=b2=c2=d2=e2=f4=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bcde, cd=dc, ce=ec, fcf-1=cde, fdf-1=de=ed, ef=fe >

Subgroups: 258 in 94 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, C23, C23, C14, C14, C22⋊C4, C22⋊C4, M4(2), C2×D4, C2×D4, C24, C28, C2×C14, C2×C14, C23⋊C4, C4.D4, C22≀C2, C56, C2×C28, C2×C28, C7×D4, C22×C14, C22×C14, C2≀C4, C7×C22⋊C4, C7×C22⋊C4, C7×M4(2), D4×C14, D4×C14, C23×C14, C7×C23⋊C4, C7×C4.D4, C7×C22≀C2, C7×C2≀C4
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, C14, C22⋊C4, C28, C2×C14, C23⋊C4, C2×C28, C7×D4, C2≀C4, C7×C22⋊C4, C7×C23⋊C4, C7×C2≀C4

Smallest permutation representation of C7×C2≀C4
On 56 points
Generators in S56
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 22)(15 53)(16 54)(17 55)(18 56)(19 50)(20 51)(21 52)
(1 39)(2 40)(3 41)(4 42)(5 36)(6 37)(7 38)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 22)(15 53)(16 54)(17 55)(18 56)(19 50)(20 51)(21 52)(29 48)(30 49)(31 43)(32 44)(33 45)(34 46)(35 47)
(8 18)(9 19)(10 20)(11 21)(12 15)(13 16)(14 17)(22 55)(23 56)(24 50)(25 51)(26 52)(27 53)(28 54)
(1 35)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 18)(9 19)(10 20)(11 21)(12 15)(13 16)(14 17)(22 55)(23 56)(24 50)(25 51)(26 52)(27 53)(28 54)(36 44)(37 45)(38 46)(39 47)(40 48)(41 49)(42 43)
(1 19)(2 20)(3 21)(4 15)(5 16)(6 17)(7 18)(8 34)(9 35)(10 29)(11 30)(12 31)(13 32)(14 33)(22 45 55 37)(23 46 56 38)(24 47 50 39)(25 48 51 40)(26 49 52 41)(27 43 53 42)(28 44 54 36)

G:=sub<Sym(56)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,22)(15,53)(16,54)(17,55)(18,56)(19,50)(20,51)(21,52), (1,39)(2,40)(3,41)(4,42)(5,36)(6,37)(7,38)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,22)(15,53)(16,54)(17,55)(18,56)(19,50)(20,51)(21,52)(29,48)(30,49)(31,43)(32,44)(33,45)(34,46)(35,47), (8,18)(9,19)(10,20)(11,21)(12,15)(13,16)(14,17)(22,55)(23,56)(24,50)(25,51)(26,52)(27,53)(28,54), (1,35)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,18)(9,19)(10,20)(11,21)(12,15)(13,16)(14,17)(22,55)(23,56)(24,50)(25,51)(26,52)(27,53)(28,54)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(42,43), (1,19)(2,20)(3,21)(4,15)(5,16)(6,17)(7,18)(8,34)(9,35)(10,29)(11,30)(12,31)(13,32)(14,33)(22,45,55,37)(23,46,56,38)(24,47,50,39)(25,48,51,40)(26,49,52,41)(27,43,53,42)(28,44,54,36)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,22)(15,53)(16,54)(17,55)(18,56)(19,50)(20,51)(21,52), (1,39)(2,40)(3,41)(4,42)(5,36)(6,37)(7,38)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,22)(15,53)(16,54)(17,55)(18,56)(19,50)(20,51)(21,52)(29,48)(30,49)(31,43)(32,44)(33,45)(34,46)(35,47), (8,18)(9,19)(10,20)(11,21)(12,15)(13,16)(14,17)(22,55)(23,56)(24,50)(25,51)(26,52)(27,53)(28,54), (1,35)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,18)(9,19)(10,20)(11,21)(12,15)(13,16)(14,17)(22,55)(23,56)(24,50)(25,51)(26,52)(27,53)(28,54)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(42,43), (1,19)(2,20)(3,21)(4,15)(5,16)(6,17)(7,18)(8,34)(9,35)(10,29)(11,30)(12,31)(13,32)(14,33)(22,45,55,37)(23,46,56,38)(24,47,50,39)(25,48,51,40)(26,49,52,41)(27,43,53,42)(28,44,54,36) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,22),(15,53),(16,54),(17,55),(18,56),(19,50),(20,51),(21,52)], [(1,39),(2,40),(3,41),(4,42),(5,36),(6,37),(7,38),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,22),(15,53),(16,54),(17,55),(18,56),(19,50),(20,51),(21,52),(29,48),(30,49),(31,43),(32,44),(33,45),(34,46),(35,47)], [(8,18),(9,19),(10,20),(11,21),(12,15),(13,16),(14,17),(22,55),(23,56),(24,50),(25,51),(26,52),(27,53),(28,54)], [(1,35),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,18),(9,19),(10,20),(11,21),(12,15),(13,16),(14,17),(22,55),(23,56),(24,50),(25,51),(26,52),(27,53),(28,54),(36,44),(37,45),(38,46),(39,47),(40,48),(41,49),(42,43)], [(1,19),(2,20),(3,21),(4,15),(5,16),(6,17),(7,18),(8,34),(9,35),(10,29),(11,30),(12,31),(13,32),(14,33),(22,45,55,37),(23,46,56,38),(24,47,50,39),(25,48,51,40),(26,49,52,41),(27,43,53,42),(28,44,54,36)]])

91 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D7A···7F8A8B14A···14F14G···14L14M···14AJ28A···28F28G···28X56A···56L
order122222244447···78814···1414···1414···1428···2828···2856···56
size112444448881···1881···12···24···44···48···88···8

91 irreducible representations

dim11111111111122224444
type++++++++
imageC1C2C2C2C4C4C7C14C14C14C28C28D4D4C7×D4C7×D4C23⋊C4C2≀C4C7×C23⋊C4C7×C2≀C4
kernelC7×C2≀C4C7×C23⋊C4C7×C4.D4C7×C22≀C2C7×C22⋊C4C23×C14C2≀C4C23⋊C4C4.D4C22≀C2C22⋊C4C24C2×C28C22×C14C2×C4C23C14C7C2C1
# reps11112266661212116612612

Matrix representation of C7×C2≀C4 in GL4(𝔽113) generated by

106000
010600
001060
000106
,
1010
0110
001120
001111
,
0110
1010
001120
001111
,
1001
0101
001120
000112
,
112000
011200
001120
000112
,
01121112
01120112
1101
0201
G:=sub<GL(4,GF(113))| [106,0,0,0,0,106,0,0,0,0,106,0,0,0,0,106],[1,0,0,0,0,1,0,0,1,1,112,111,0,0,0,1],[0,1,0,0,1,0,0,0,1,1,112,111,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,112,0,1,1,0,112],[112,0,0,0,0,112,0,0,0,0,112,0,0,0,0,112],[0,0,1,0,112,112,1,2,1,0,0,0,112,112,1,1] >;

C7×C2≀C4 in GAP, Magma, Sage, TeX

C_7\times C_2\wr C_4
% in TeX

G:=Group("C7xC2wrC4");
// GroupNames label

G:=SmallGroup(448,155);
// by ID

G=gap.SmallGroup(448,155);
# by ID

G:=PCGroup([7,-2,-2,-7,-2,-2,-2,-2,392,421,3923,2951,375,14117]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^7=b^2=c^2=d^2=e^2=f^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c*d*e,c*d=d*c,c*e=e*c,f*c*f^-1=c*d*e,f*d*f^-1=d*e=e*d,e*f=f*e>;
// generators/relations

׿
×
𝔽