direct product, metabelian, nilpotent (class 4), monomial, 2-elementary
Aliases: C7×C2≀C4, C24⋊2C28, C22⋊C4⋊1C28, C23⋊C4⋊1C14, (C23×C14)⋊1C4, (C2×C28).17D4, C23.1(C7×D4), C4.D4⋊5C14, C23.1(C2×C28), (C22×C14).1D4, C22≀C2.1C14, C14.32(C23⋊C4), (D4×C14).174C22, (C2×C4).1(C7×D4), (C7×C23⋊C4)⋊7C2, (C7×C22⋊C4)⋊3C4, C2.6(C7×C23⋊C4), (C2×D4).1(C2×C14), (C7×C22≀C2).3C2, (C7×C4.D4)⋊12C2, (C22×C14).8(C2×C4), C22.10(C7×C22⋊C4), (C2×C14).73(C22⋊C4), SmallGroup(448,155)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C7×C2≀C4
G = < a,b,c,d,e,f | a7=b2=c2=d2=e2=f4=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bcde, cd=dc, ce=ec, fcf-1=cde, fdf-1=de=ed, ef=fe >
Subgroups: 258 in 94 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, C23, C23, C14, C14, C22⋊C4, C22⋊C4, M4(2), C2×D4, C2×D4, C24, C28, C2×C14, C2×C14, C23⋊C4, C4.D4, C22≀C2, C56, C2×C28, C2×C28, C7×D4, C22×C14, C22×C14, C2≀C4, C7×C22⋊C4, C7×C22⋊C4, C7×M4(2), D4×C14, D4×C14, C23×C14, C7×C23⋊C4, C7×C4.D4, C7×C22≀C2, C7×C2≀C4
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, C14, C22⋊C4, C28, C2×C14, C23⋊C4, C2×C28, C7×D4, C2≀C4, C7×C22⋊C4, C7×C23⋊C4, C7×C2≀C4
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 22)(15 53)(16 54)(17 55)(18 56)(19 50)(20 51)(21 52)
(1 39)(2 40)(3 41)(4 42)(5 36)(6 37)(7 38)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 22)(15 53)(16 54)(17 55)(18 56)(19 50)(20 51)(21 52)(29 48)(30 49)(31 43)(32 44)(33 45)(34 46)(35 47)
(8 18)(9 19)(10 20)(11 21)(12 15)(13 16)(14 17)(22 55)(23 56)(24 50)(25 51)(26 52)(27 53)(28 54)
(1 35)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 18)(9 19)(10 20)(11 21)(12 15)(13 16)(14 17)(22 55)(23 56)(24 50)(25 51)(26 52)(27 53)(28 54)(36 44)(37 45)(38 46)(39 47)(40 48)(41 49)(42 43)
(1 19)(2 20)(3 21)(4 15)(5 16)(6 17)(7 18)(8 34)(9 35)(10 29)(11 30)(12 31)(13 32)(14 33)(22 45 55 37)(23 46 56 38)(24 47 50 39)(25 48 51 40)(26 49 52 41)(27 43 53 42)(28 44 54 36)
G:=sub<Sym(56)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,22)(15,53)(16,54)(17,55)(18,56)(19,50)(20,51)(21,52), (1,39)(2,40)(3,41)(4,42)(5,36)(6,37)(7,38)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,22)(15,53)(16,54)(17,55)(18,56)(19,50)(20,51)(21,52)(29,48)(30,49)(31,43)(32,44)(33,45)(34,46)(35,47), (8,18)(9,19)(10,20)(11,21)(12,15)(13,16)(14,17)(22,55)(23,56)(24,50)(25,51)(26,52)(27,53)(28,54), (1,35)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,18)(9,19)(10,20)(11,21)(12,15)(13,16)(14,17)(22,55)(23,56)(24,50)(25,51)(26,52)(27,53)(28,54)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(42,43), (1,19)(2,20)(3,21)(4,15)(5,16)(6,17)(7,18)(8,34)(9,35)(10,29)(11,30)(12,31)(13,32)(14,33)(22,45,55,37)(23,46,56,38)(24,47,50,39)(25,48,51,40)(26,49,52,41)(27,43,53,42)(28,44,54,36)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,22)(15,53)(16,54)(17,55)(18,56)(19,50)(20,51)(21,52), (1,39)(2,40)(3,41)(4,42)(5,36)(6,37)(7,38)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,22)(15,53)(16,54)(17,55)(18,56)(19,50)(20,51)(21,52)(29,48)(30,49)(31,43)(32,44)(33,45)(34,46)(35,47), (8,18)(9,19)(10,20)(11,21)(12,15)(13,16)(14,17)(22,55)(23,56)(24,50)(25,51)(26,52)(27,53)(28,54), (1,35)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,18)(9,19)(10,20)(11,21)(12,15)(13,16)(14,17)(22,55)(23,56)(24,50)(25,51)(26,52)(27,53)(28,54)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(42,43), (1,19)(2,20)(3,21)(4,15)(5,16)(6,17)(7,18)(8,34)(9,35)(10,29)(11,30)(12,31)(13,32)(14,33)(22,45,55,37)(23,46,56,38)(24,47,50,39)(25,48,51,40)(26,49,52,41)(27,43,53,42)(28,44,54,36) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,22),(15,53),(16,54),(17,55),(18,56),(19,50),(20,51),(21,52)], [(1,39),(2,40),(3,41),(4,42),(5,36),(6,37),(7,38),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,22),(15,53),(16,54),(17,55),(18,56),(19,50),(20,51),(21,52),(29,48),(30,49),(31,43),(32,44),(33,45),(34,46),(35,47)], [(8,18),(9,19),(10,20),(11,21),(12,15),(13,16),(14,17),(22,55),(23,56),(24,50),(25,51),(26,52),(27,53),(28,54)], [(1,35),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,18),(9,19),(10,20),(11,21),(12,15),(13,16),(14,17),(22,55),(23,56),(24,50),(25,51),(26,52),(27,53),(28,54),(36,44),(37,45),(38,46),(39,47),(40,48),(41,49),(42,43)], [(1,19),(2,20),(3,21),(4,15),(5,16),(6,17),(7,18),(8,34),(9,35),(10,29),(11,30),(12,31),(13,32),(14,33),(22,45,55,37),(23,46,56,38),(24,47,50,39),(25,48,51,40),(26,49,52,41),(27,43,53,42),(28,44,54,36)]])
91 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 7A | ··· | 7F | 8A | 8B | 14A | ··· | 14F | 14G | ··· | 14L | 14M | ··· | 14AJ | 28A | ··· | 28F | 28G | ··· | 28X | 56A | ··· | 56L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 7 | ··· | 7 | 8 | 8 | 14 | ··· | 14 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 | 56 | ··· | 56 |
size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 1 | ··· | 1 | 8 | 8 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
91 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C7 | C14 | C14 | C14 | C28 | C28 | D4 | D4 | C7×D4 | C7×D4 | C23⋊C4 | C2≀C4 | C7×C23⋊C4 | C7×C2≀C4 |
kernel | C7×C2≀C4 | C7×C23⋊C4 | C7×C4.D4 | C7×C22≀C2 | C7×C22⋊C4 | C23×C14 | C2≀C4 | C23⋊C4 | C4.D4 | C22≀C2 | C22⋊C4 | C24 | C2×C28 | C22×C14 | C2×C4 | C23 | C14 | C7 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 6 | 6 | 6 | 12 | 12 | 1 | 1 | 6 | 6 | 1 | 2 | 6 | 12 |
Matrix representation of C7×C2≀C4 ►in GL4(𝔽113) generated by
106 | 0 | 0 | 0 |
0 | 106 | 0 | 0 |
0 | 0 | 106 | 0 |
0 | 0 | 0 | 106 |
1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 |
0 | 0 | 112 | 0 |
0 | 0 | 111 | 1 |
0 | 1 | 1 | 0 |
1 | 0 | 1 | 0 |
0 | 0 | 112 | 0 |
0 | 0 | 111 | 1 |
1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 |
0 | 0 | 112 | 0 |
0 | 0 | 0 | 112 |
112 | 0 | 0 | 0 |
0 | 112 | 0 | 0 |
0 | 0 | 112 | 0 |
0 | 0 | 0 | 112 |
0 | 112 | 1 | 112 |
0 | 112 | 0 | 112 |
1 | 1 | 0 | 1 |
0 | 2 | 0 | 1 |
G:=sub<GL(4,GF(113))| [106,0,0,0,0,106,0,0,0,0,106,0,0,0,0,106],[1,0,0,0,0,1,0,0,1,1,112,111,0,0,0,1],[0,1,0,0,1,0,0,0,1,1,112,111,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,112,0,1,1,0,112],[112,0,0,0,0,112,0,0,0,0,112,0,0,0,0,112],[0,0,1,0,112,112,1,2,1,0,0,0,112,112,1,1] >;
C7×C2≀C4 in GAP, Magma, Sage, TeX
C_7\times C_2\wr C_4
% in TeX
G:=Group("C7xC2wrC4");
// GroupNames label
G:=SmallGroup(448,155);
// by ID
G=gap.SmallGroup(448,155);
# by ID
G:=PCGroup([7,-2,-2,-7,-2,-2,-2,-2,392,421,3923,2951,375,14117]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^7=b^2=c^2=d^2=e^2=f^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c*d*e,c*d=d*c,c*e=e*c,f*c*f^-1=c*d*e,f*d*f^-1=d*e=e*d,e*f=f*e>;
// generators/relations