Copied to
clipboard

G = C8xF8order 448 = 26·7

Direct product of C8 and F8

direct product, metabelian, soluble, monomial, A-group

Aliases: C8xF8, C23:C56, C24.C28, (C23xC8):C7, C2.(C4xF8), (C2xF8).C4, C4.2(C2xF8), (C4xF8).2C2, (C23xC4).2C14, SmallGroup(448,919)

Series: Derived Chief Lower central Upper central

C1C23 — C8xF8
C1C23C24C23xC4C4xF8 — C8xF8
C23 — C8xF8
C1C8

Generators and relations for C8xF8
 G = < a,b,c,d,e | a8=b2=c2=d2=e7=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=dc=cd, ece-1=b, ede-1=c >

Subgroups: 205 in 39 conjugacy classes, 12 normal (all characteristic)
Quotients: C1, C2, C4, C7, C8, C14, C28, C56, F8, C2xF8, C4xF8, C8xF8
7C2
7C2
8C7
7C22
7C22
7C4
7C22
7C22
7C22
8C14
7C23
7C23
7C2xC4
7C2xC4
7C2xC4
7C2xC4
7C8
8C28
7C2xC8
7C22xC4
7C22xC4
7C2xC8
7C2xC8
7C2xC8
8C56
7C22xC8
7C22xC8

Smallest permutation representation of C8xF8
On 56 points
Generators in S56
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 5)(2 6)(3 7)(4 8)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)
(1 31 38 55 23 47 11)(2 32 39 56 24 48 12)(3 25 40 49 17 41 13)(4 26 33 50 18 42 14)(5 27 34 51 19 43 15)(6 28 35 52 20 44 16)(7 29 36 53 21 45 9)(8 30 37 54 22 46 10)

G:=sub<Sym(56)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,5)(2,6)(3,7)(4,8)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,31,38,55,23,47,11)(2,32,39,56,24,48,12)(3,25,40,49,17,41,13)(4,26,33,50,18,42,14)(5,27,34,51,19,43,15)(6,28,35,52,20,44,16)(7,29,36,53,21,45,9)(8,30,37,54,22,46,10)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,5)(2,6)(3,7)(4,8)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,31,38,55,23,47,11)(2,32,39,56,24,48,12)(3,25,40,49,17,41,13)(4,26,33,50,18,42,14)(5,27,34,51,19,43,15)(6,28,35,52,20,44,16)(7,29,36,53,21,45,9)(8,30,37,54,22,46,10) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,5),(2,6),(3,7),(4,8),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48)], [(1,31,38,55,23,47,11),(2,32,39,56,24,48,12),(3,25,40,49,17,41,13),(4,26,33,50,18,42,14),(5,27,34,51,19,43,15),(6,28,35,52,20,44,16),(7,29,36,53,21,45,9),(8,30,37,54,22,46,10)]])

64 conjugacy classes

class 1 2A2B2C4A4B4C4D7A···7F8A8B8C8D8E8F8G8H14A···14F28A···28L56A···56X
order122244447···78888888814···1428···2856···56
size117711778···8111177778···88···88···8

64 irreducible representations

dim111111117777
type++++
imageC1C2C4C7C8C14C28C56F8C2xF8C4xF8C8xF8
kernelC8xF8C4xF8C2xF8C23xC8F8C23xC4C24C23C8C4C2C1
# reps11264612241124

Matrix representation of C8xF8 in GL7(F113)

18000000
01800000
00180000
00018000
00001800
00000180
00000018
,
112000000
011200000
001120000
0001000
000011200
0000010
0000001
,
112000000
011200000
0010000
000112000
0000100
0000010
000000112
,
112000000
0100000
001120000
0001000
0000100
000001120
000000112
,
0100000
0010000
0001000
0000100
0000010
0000001
1000000

G:=sub<GL(7,GF(113))| [18,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,18],[112,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[112,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,112],[112,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,112],[0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0] >;

C8xF8 in GAP, Magma, Sage, TeX

C_8\times F_8
% in TeX

G:=Group("C8xF8");
// GroupNames label

G:=SmallGroup(448,919);
// by ID

G=gap.SmallGroup(448,919);
# by ID

G:=PCGroup([7,-2,-7,-2,-2,-2,2,2,98,58,1971,4716,6873]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=b^2=c^2=d^2=e^7=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=d*c=c*d,e*c*e^-1=b,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of C8xF8 in TeX

׿
x
:
Z
F
o
wr
Q
<