direct product, metabelian, soluble, monomial, A-group
Aliases: C2×F8, C24⋊C7, C23⋊C14, SmallGroup(112,41)
Series: Derived ►Chief ►Lower central ►Upper central
C23 — C2×F8 |
Generators and relations for C2×F8
G = < a,b,c,d,e | a2=b2=c2=d2=e7=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=dc=cd, ece-1=b, ede-1=c >
Character table of C2×F8
class | 1 | 2A | 2B | 2C | 7A | 7B | 7C | 7D | 7E | 7F | 14A | 14B | 14C | 14D | 14E | 14F | |
size | 1 | 1 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | ζ72 | ζ7 | ζ73 | ζ75 | ζ74 | ζ76 | -ζ72 | -ζ74 | -ζ76 | -ζ7 | -ζ73 | -ζ75 | linear of order 14 |
ρ4 | 1 | 1 | 1 | 1 | ζ75 | ζ76 | ζ74 | ζ72 | ζ73 | ζ7 | ζ75 | ζ73 | ζ7 | ζ76 | ζ74 | ζ72 | linear of order 7 |
ρ5 | 1 | 1 | 1 | 1 | ζ74 | ζ72 | ζ76 | ζ73 | ζ7 | ζ75 | ζ74 | ζ7 | ζ75 | ζ72 | ζ76 | ζ73 | linear of order 7 |
ρ6 | 1 | -1 | -1 | 1 | ζ76 | ζ73 | ζ72 | ζ7 | ζ75 | ζ74 | -ζ76 | -ζ75 | -ζ74 | -ζ73 | -ζ72 | -ζ7 | linear of order 14 |
ρ7 | 1 | 1 | 1 | 1 | ζ7 | ζ74 | ζ75 | ζ76 | ζ72 | ζ73 | ζ7 | ζ72 | ζ73 | ζ74 | ζ75 | ζ76 | linear of order 7 |
ρ8 | 1 | -1 | -1 | 1 | ζ74 | ζ72 | ζ76 | ζ73 | ζ7 | ζ75 | -ζ74 | -ζ7 | -ζ75 | -ζ72 | -ζ76 | -ζ73 | linear of order 14 |
ρ9 | 1 | -1 | -1 | 1 | ζ73 | ζ75 | ζ7 | ζ74 | ζ76 | ζ72 | -ζ73 | -ζ76 | -ζ72 | -ζ75 | -ζ7 | -ζ74 | linear of order 14 |
ρ10 | 1 | 1 | 1 | 1 | ζ72 | ζ7 | ζ73 | ζ75 | ζ74 | ζ76 | ζ72 | ζ74 | ζ76 | ζ7 | ζ73 | ζ75 | linear of order 7 |
ρ11 | 1 | -1 | -1 | 1 | ζ7 | ζ74 | ζ75 | ζ76 | ζ72 | ζ73 | -ζ7 | -ζ72 | -ζ73 | -ζ74 | -ζ75 | -ζ76 | linear of order 14 |
ρ12 | 1 | 1 | 1 | 1 | ζ73 | ζ75 | ζ7 | ζ74 | ζ76 | ζ72 | ζ73 | ζ76 | ζ72 | ζ75 | ζ7 | ζ74 | linear of order 7 |
ρ13 | 1 | -1 | -1 | 1 | ζ75 | ζ76 | ζ74 | ζ72 | ζ73 | ζ7 | -ζ75 | -ζ73 | -ζ7 | -ζ76 | -ζ74 | -ζ72 | linear of order 14 |
ρ14 | 1 | 1 | 1 | 1 | ζ76 | ζ73 | ζ72 | ζ7 | ζ75 | ζ74 | ζ76 | ζ75 | ζ74 | ζ73 | ζ72 | ζ7 | linear of order 7 |
ρ15 | 7 | -7 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ16 | 7 | 7 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from F8 |
(1 12)(2 13)(3 14)(4 8)(5 9)(6 10)(7 11)
(1 12)(4 8)(6 10)(7 11)
(1 12)(2 13)(5 9)(7 11)
(1 12)(2 13)(3 14)(6 10)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)
G:=sub<Sym(14)| (1,12)(2,13)(3,14)(4,8)(5,9)(6,10)(7,11), (1,12)(4,8)(6,10)(7,11), (1,12)(2,13)(5,9)(7,11), (1,12)(2,13)(3,14)(6,10), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)>;
G:=Group( (1,12)(2,13)(3,14)(4,8)(5,9)(6,10)(7,11), (1,12)(4,8)(6,10)(7,11), (1,12)(2,13)(5,9)(7,11), (1,12)(2,13)(3,14)(6,10), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14) );
G=PermutationGroup([[(1,12),(2,13),(3,14),(4,8),(5,9),(6,10),(7,11)], [(1,12),(4,8),(6,10),(7,11)], [(1,12),(2,13),(5,9),(7,11)], [(1,12),(2,13),(3,14),(6,10)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14)]])
G:=TransitiveGroup(14,9);
(1 2)(3 13)(4 14)(5 15)(6 16)(7 10)(8 11)(9 12)
(1 4)(2 14)(3 8)(5 9)(6 7)(10 16)(11 13)(12 15)
(1 5)(2 15)(3 6)(4 9)(7 8)(10 11)(12 14)(13 16)
(1 6)(2 16)(3 5)(4 7)(8 9)(10 14)(11 12)(13 15)
(3 4 5 6 7 8 9)(10 11 12 13 14 15 16)
G:=sub<Sym(16)| (1,2)(3,13)(4,14)(5,15)(6,16)(7,10)(8,11)(9,12), (1,4)(2,14)(3,8)(5,9)(6,7)(10,16)(11,13)(12,15), (1,5)(2,15)(3,6)(4,9)(7,8)(10,11)(12,14)(13,16), (1,6)(2,16)(3,5)(4,7)(8,9)(10,14)(11,12)(13,15), (3,4,5,6,7,8,9)(10,11,12,13,14,15,16)>;
G:=Group( (1,2)(3,13)(4,14)(5,15)(6,16)(7,10)(8,11)(9,12), (1,4)(2,14)(3,8)(5,9)(6,7)(10,16)(11,13)(12,15), (1,5)(2,15)(3,6)(4,9)(7,8)(10,11)(12,14)(13,16), (1,6)(2,16)(3,5)(4,7)(8,9)(10,14)(11,12)(13,15), (3,4,5,6,7,8,9)(10,11,12,13,14,15,16) );
G=PermutationGroup([[(1,2),(3,13),(4,14),(5,15),(6,16),(7,10),(8,11),(9,12)], [(1,4),(2,14),(3,8),(5,9),(6,7),(10,16),(11,13),(12,15)], [(1,5),(2,15),(3,6),(4,9),(7,8),(10,11),(12,14),(13,16)], [(1,6),(2,16),(3,5),(4,7),(8,9),(10,14),(11,12),(13,15)], [(3,4,5,6,7,8,9),(10,11,12,13,14,15,16)]])
G:=TransitiveGroup(16,196);
(1 24)(2 25)(3 26)(4 27)(5 28)(6 22)(7 23)(8 17)(9 18)(10 19)(11 20)(12 21)(13 15)(14 16)
(1 17)(2 9)(4 27)(5 12)(6 22)(7 16)(8 24)(11 20)(13 15)(14 23)(18 25)(21 28)
(1 17)(2 18)(3 10)(5 28)(6 13)(7 23)(8 24)(9 25)(12 21)(14 16)(15 22)(19 26)
(1 24)(2 18)(3 19)(4 11)(6 22)(7 14)(8 17)(9 25)(10 26)(13 15)(16 23)(20 27)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
G:=sub<Sym(28)| (1,24)(2,25)(3,26)(4,27)(5,28)(6,22)(7,23)(8,17)(9,18)(10,19)(11,20)(12,21)(13,15)(14,16), (1,17)(2,9)(4,27)(5,12)(6,22)(7,16)(8,24)(11,20)(13,15)(14,23)(18,25)(21,28), (1,17)(2,18)(3,10)(5,28)(6,13)(7,23)(8,24)(9,25)(12,21)(14,16)(15,22)(19,26), (1,24)(2,18)(3,19)(4,11)(6,22)(7,14)(8,17)(9,25)(10,26)(13,15)(16,23)(20,27), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)>;
G:=Group( (1,24)(2,25)(3,26)(4,27)(5,28)(6,22)(7,23)(8,17)(9,18)(10,19)(11,20)(12,21)(13,15)(14,16), (1,17)(2,9)(4,27)(5,12)(6,22)(7,16)(8,24)(11,20)(13,15)(14,23)(18,25)(21,28), (1,17)(2,18)(3,10)(5,28)(6,13)(7,23)(8,24)(9,25)(12,21)(14,16)(15,22)(19,26), (1,24)(2,18)(3,19)(4,11)(6,22)(7,14)(8,17)(9,25)(10,26)(13,15)(16,23)(20,27), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28) );
G=PermutationGroup([[(1,24),(2,25),(3,26),(4,27),(5,28),(6,22),(7,23),(8,17),(9,18),(10,19),(11,20),(12,21),(13,15),(14,16)], [(1,17),(2,9),(4,27),(5,12),(6,22),(7,16),(8,24),(11,20),(13,15),(14,23),(18,25),(21,28)], [(1,17),(2,18),(3,10),(5,28),(6,13),(7,23),(8,24),(9,25),(12,21),(14,16),(15,22),(19,26)], [(1,24),(2,18),(3,19),(4,11),(6,22),(7,14),(8,17),(9,25),(10,26),(13,15),(16,23),(20,27)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)]])
G:=TransitiveGroup(28,19);
(1 24)(2 25)(3 26)(4 27)(5 28)(6 22)(7 23)(8 15)(9 16)(10 17)(11 18)(12 19)(13 20)(14 21)
(1 19)(4 15)(6 17)(7 18)(8 27)(10 22)(11 23)(12 24)
(1 19)(2 20)(5 16)(7 18)(9 28)(11 23)(12 24)(13 25)
(1 19)(2 20)(3 21)(6 17)(10 22)(12 24)(13 25)(14 26)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
G:=sub<Sym(28)| (1,24)(2,25)(3,26)(4,27)(5,28)(6,22)(7,23)(8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21), (1,19)(4,15)(6,17)(7,18)(8,27)(10,22)(11,23)(12,24), (1,19)(2,20)(5,16)(7,18)(9,28)(11,23)(12,24)(13,25), (1,19)(2,20)(3,21)(6,17)(10,22)(12,24)(13,25)(14,26), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)>;
G:=Group( (1,24)(2,25)(3,26)(4,27)(5,28)(6,22)(7,23)(8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21), (1,19)(4,15)(6,17)(7,18)(8,27)(10,22)(11,23)(12,24), (1,19)(2,20)(5,16)(7,18)(9,28)(11,23)(12,24)(13,25), (1,19)(2,20)(3,21)(6,17)(10,22)(12,24)(13,25)(14,26), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28) );
G=PermutationGroup([[(1,24),(2,25),(3,26),(4,27),(5,28),(6,22),(7,23),(8,15),(9,16),(10,17),(11,18),(12,19),(13,20),(14,21)], [(1,19),(4,15),(6,17),(7,18),(8,27),(10,22),(11,23),(12,24)], [(1,19),(2,20),(5,16),(7,18),(9,28),(11,23),(12,24),(13,25)], [(1,19),(2,20),(3,21),(6,17),(10,22),(12,24),(13,25),(14,26)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)]])
G:=TransitiveGroup(28,20);
Polynomial with Galois group C2×F8 over ℚ
action | f(x) | Disc(f) |
---|---|---|
14T9 | x14+7x12-49x10-245x8+588x6+294x4-7 | 214·725·194·318·5094 |
Matrix representation of C2×F8 ►in GL7(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(7,Integers())| [-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1],[0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0] >;
C2×F8 in GAP, Magma, Sage, TeX
C_2\times F_8
% in TeX
G:=Group("C2xF8");
// GroupNames label
G:=SmallGroup(112,41);
// by ID
G=gap.SmallGroup(112,41);
# by ID
G:=PCGroup([5,-2,-7,-2,2,2,217,568,884]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^7=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=d*c=c*d,e*c*e^-1=b,e*d*e^-1=c>;
// generators/relations
Export
Subgroup lattice of C2×F8 in TeX
Character table of C2×F8 in TeX