Extensions 1→N→G→Q→1 with N=C7:D4 and Q=D4

Direct product G=NxQ with N=C7:D4 and Q=D4
dρLabelID
D4xC7:D4112D4xC7:D4448,1254

Semidirect products G=N:Q with N=C7:D4 and Q=D4
extensionφ:Q→Out NdρLabelID
C7:D4:1D4 = D28:19D4φ: D4/C4C2 ⊆ Out C7:D4112C7:D4:1D4448,1062
C7:D4:2D4 = C14.402+ 1+4φ: D4/C4C2 ⊆ Out C7:D4112C7:D4:2D4448,1063
C7:D4:3D4 = C14.732- 1+4φ: D4/C4C2 ⊆ Out C7:D4224C7:D4:3D4448,1064
C7:D4:4D4 = C24:3D14φ: D4/C22C2 ⊆ Out C7:D4112C7:D4:4D4448,1043
C7:D4:5D4 = C24.33D14φ: D4/C22C2 ⊆ Out C7:D4112C7:D4:5D4448,1044
C7:D4:6D4 = C14.1212+ 1+4φ: D4/C22C2 ⊆ Out C7:D4112C7:D4:6D4448,1107
C7:D4:7D4 = C14.822- 1+4φ: D4/C22C2 ⊆ Out C7:D4224C7:D4:7D4448,1108
C7:D4:8D4 = C24.27D14φ: trivial image112C7:D4:8D4448,943
C7:D4:9D4 = C14.2- 1+4φ: trivial image224C7:D4:9D4448,960

Non-split extensions G=N.Q with N=C7:D4 and Q=D4
extensionφ:Q→Out NdρLabelID
C7:D4.1D4 = D8:15D14φ: D4/C4C2 ⊆ Out C7:D41124+C7:D4.1D4448,1222
C7:D4.2D4 = D8:11D14φ: D4/C4C2 ⊆ Out C7:D41124C7:D4.2D4448,1223
C7:D4.3D4 = D8.10D14φ: D4/C4C2 ⊆ Out C7:D42244-C7:D4.3D4448,1224
C7:D4.4D4 = D8:5D14φ: D4/C22C2 ⊆ Out C7:D41128+C7:D4.4D4448,1227
C7:D4.5D4 = D8:6D14φ: D4/C22C2 ⊆ Out C7:D41128-C7:D4.5D4448,1228
C7:D4.6D4 = C56.C23φ: D4/C22C2 ⊆ Out C7:D41128+C7:D4.6D4448,1231
C7:D4.7D4 = D28.44D4φ: D4/C22C2 ⊆ Out C7:D42248-C7:D4.7D4448,1232
C7:D4.8D4 = D8:13D14φ: trivial image1124C7:D4.8D4448,1210
C7:D4.9D4 = D28.29D4φ: trivial image1124C7:D4.9D4448,1215
C7:D4.10D4 = D28.30D4φ: trivial image2244C7:D4.10D4448,1219

׿
x
:
Z
F
o
wr
Q
<