Extensions 1→N→G→Q→1 with N=C2xSD16 and Q=D7

Direct product G=NxQ with N=C2xSD16 and Q=D7
dρLabelID
C2xD7xSD16112C2xD7xSD16448,1211

Semidirect products G=N:Q with N=C2xSD16 and Q=D7
extensionφ:Q→Out NdρLabelID
(C2xSD16):1D7 = C56:8D4φ: D7/C7C2 ⊆ Out C2xSD16224(C2xSD16):1D7448,708
(C2xSD16):2D7 = C56:9D4φ: D7/C7C2 ⊆ Out C2xSD16224(C2xSD16):2D7448,710
(C2xSD16):3D7 = C56.44D4φ: D7/C7C2 ⊆ Out C2xSD161124(C2xSD16):3D7448,711
(C2xSD16):4D7 = C2xD56:C2φ: D7/C7C2 ⊆ Out C2xSD16112(C2xSD16):4D7448,1212
(C2xSD16):5D7 = C2xSD16:D7φ: D7/C7C2 ⊆ Out C2xSD16224(C2xSD16):5D7448,1213
(C2xSD16):6D7 = D28.29D4φ: D7/C7C2 ⊆ Out C2xSD161124(C2xSD16):6D7448,1215
(C2xSD16):7D7 = Dic7:5SD16φ: D7/C7C2 ⊆ Out C2xSD16224(C2xSD16):7D7448,697
(C2xSD16):8D7 = (C7xD4).D4φ: D7/C7C2 ⊆ Out C2xSD16224(C2xSD16):8D7448,699
(C2xSD16):9D7 = C56.43D4φ: D7/C7C2 ⊆ Out C2xSD16224(C2xSD16):9D7448,702
(C2xSD16):10D7 = D14:6SD16φ: D7/C7C2 ⊆ Out C2xSD16112(C2xSD16):10D7448,703
(C2xSD16):11D7 = Dic14:7D4φ: D7/C7C2 ⊆ Out C2xSD16224(C2xSD16):11D7448,704
(C2xSD16):12D7 = C56:14D4φ: D7/C7C2 ⊆ Out C2xSD16224(C2xSD16):12D7448,705
(C2xSD16):13D7 = D28:7D4φ: D7/C7C2 ⊆ Out C2xSD16224(C2xSD16):13D7448,706
(C2xSD16):14D7 = Dic14.16D4φ: D7/C7C2 ⊆ Out C2xSD16224(C2xSD16):14D7448,707
(C2xSD16):15D7 = C56:15D4φ: D7/C7C2 ⊆ Out C2xSD16224(C2xSD16):15D7448,709
(C2xSD16):16D7 = C2xSD16:3D7φ: trivial image224(C2xSD16):16D7448,1214

Non-split extensions G=N.Q with N=C2xSD16 and Q=D7
extensionφ:Q→Out NdρLabelID
(C2xSD16).1D7 = SD16:Dic7φ: D7/C7C2 ⊆ Out C2xSD16224(C2xSD16).1D7448,698
(C2xSD16).2D7 = C56.31D4φ: D7/C7C2 ⊆ Out C2xSD16224(C2xSD16).2D7448,701
(C2xSD16).3D7 = Dic7:3SD16φ: D7/C7C2 ⊆ Out C2xSD16224(C2xSD16).3D7448,696
(C2xSD16).4D7 = (C7xQ8).D4φ: D7/C7C2 ⊆ Out C2xSD16224(C2xSD16).4D7448,700
(C2xSD16).5D7 = SD16xDic7φ: trivial image224(C2xSD16).5D7448,695

׿
x
:
Z
F
o
wr
Q
<