Copied to
clipboard

G = C56.44D4order 448 = 26·7

44th non-split extension by C56 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C56.44D4, D28.26D4, Dic14.26D4, C4.66(D4×D7), (C2×SD16)⋊3D7, (C2×C8).92D14, (C14×SD16)⋊1C2, (C2×D4).78D14, C28.D48C2, C28.180(C2×D4), C75(D4.3D4), C8.32(C7⋊D4), (C2×Q8).59D14, C56.C410C2, D28.2C44C2, C28.C234C2, C28.10D47C2, (C2×C56).48C22, C2.21(C282D4), (C2×C28).454C23, D4.D14.2C2, C4○D28.47C22, (Q8×C14).83C22, C14.118(C4⋊D4), (D4×C14).103C22, C4.Dic7.20C22, C22.21(D42D7), C4.84(C2×C7⋊D4), (C2×C4).127(C22×D7), (C2×C14).159(C4○D4), SmallGroup(448,711)

Series: Derived Chief Lower central Upper central

C1C2×C28 — C56.44D4
C1C7C14C28C2×C28C4○D28D28.2C4 — C56.44D4
C7C14C2×C28 — C56.44D4
C1C2C2×C4C2×SD16

Generators and relations for C56.44D4
 G = < a,b,c | a56=c2=1, b4=a28, bab-1=a27, cac=a41, cbc=a28b3 >

Subgroups: 452 in 104 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C14, C2×C8, C2×C8, M4(2), D8, SD16, Q16, C2×D4, C2×Q8, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C4.D4, C4.10D4, C8.C4, C8○D4, C2×SD16, C8⋊C22, C8.C22, C7⋊C8, C56, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×Q8, C22×C14, D4.3D4, C8×D7, C8⋊D7, C4.Dic7, D4⋊D7, D4.D7, Q8⋊D7, C7⋊Q16, C2×C56, C7×SD16, C4○D28, D4×C14, Q8×C14, C56.C4, C28.D4, C28.10D4, D28.2C4, D4.D14, C28.C23, C14×SD16, C56.44D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, C7⋊D4, C22×D7, D4.3D4, D4×D7, D42D7, C2×C7⋊D4, C282D4, C56.44D4

Smallest permutation representation of C56.44D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 57 43 71 29 85 15 99)(2 84 44 98 30 112 16 70)(3 111 45 69 31 83 17 97)(4 82 46 96 32 110 18 68)(5 109 47 67 33 81 19 95)(6 80 48 94 34 108 20 66)(7 107 49 65 35 79 21 93)(8 78 50 92 36 106 22 64)(9 105 51 63 37 77 23 91)(10 76 52 90 38 104 24 62)(11 103 53 61 39 75 25 89)(12 74 54 88 40 102 26 60)(13 101 55 59 41 73 27 87)(14 72 56 86 42 100 28 58)
(1 57)(2 98)(3 83)(4 68)(5 109)(6 94)(7 79)(8 64)(9 105)(10 90)(11 75)(12 60)(13 101)(14 86)(15 71)(16 112)(17 97)(18 82)(19 67)(20 108)(21 93)(22 78)(23 63)(24 104)(25 89)(26 74)(27 59)(28 100)(29 85)(30 70)(31 111)(32 96)(33 81)(34 66)(35 107)(36 92)(37 77)(38 62)(39 103)(40 88)(41 73)(42 58)(43 99)(44 84)(45 69)(46 110)(47 95)(48 80)(49 65)(50 106)(51 91)(52 76)(53 61)(54 102)(55 87)(56 72)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,57,43,71,29,85,15,99)(2,84,44,98,30,112,16,70)(3,111,45,69,31,83,17,97)(4,82,46,96,32,110,18,68)(5,109,47,67,33,81,19,95)(6,80,48,94,34,108,20,66)(7,107,49,65,35,79,21,93)(8,78,50,92,36,106,22,64)(9,105,51,63,37,77,23,91)(10,76,52,90,38,104,24,62)(11,103,53,61,39,75,25,89)(12,74,54,88,40,102,26,60)(13,101,55,59,41,73,27,87)(14,72,56,86,42,100,28,58), (1,57)(2,98)(3,83)(4,68)(5,109)(6,94)(7,79)(8,64)(9,105)(10,90)(11,75)(12,60)(13,101)(14,86)(15,71)(16,112)(17,97)(18,82)(19,67)(20,108)(21,93)(22,78)(23,63)(24,104)(25,89)(26,74)(27,59)(28,100)(29,85)(30,70)(31,111)(32,96)(33,81)(34,66)(35,107)(36,92)(37,77)(38,62)(39,103)(40,88)(41,73)(42,58)(43,99)(44,84)(45,69)(46,110)(47,95)(48,80)(49,65)(50,106)(51,91)(52,76)(53,61)(54,102)(55,87)(56,72)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,57,43,71,29,85,15,99)(2,84,44,98,30,112,16,70)(3,111,45,69,31,83,17,97)(4,82,46,96,32,110,18,68)(5,109,47,67,33,81,19,95)(6,80,48,94,34,108,20,66)(7,107,49,65,35,79,21,93)(8,78,50,92,36,106,22,64)(9,105,51,63,37,77,23,91)(10,76,52,90,38,104,24,62)(11,103,53,61,39,75,25,89)(12,74,54,88,40,102,26,60)(13,101,55,59,41,73,27,87)(14,72,56,86,42,100,28,58), (1,57)(2,98)(3,83)(4,68)(5,109)(6,94)(7,79)(8,64)(9,105)(10,90)(11,75)(12,60)(13,101)(14,86)(15,71)(16,112)(17,97)(18,82)(19,67)(20,108)(21,93)(22,78)(23,63)(24,104)(25,89)(26,74)(27,59)(28,100)(29,85)(30,70)(31,111)(32,96)(33,81)(34,66)(35,107)(36,92)(37,77)(38,62)(39,103)(40,88)(41,73)(42,58)(43,99)(44,84)(45,69)(46,110)(47,95)(48,80)(49,65)(50,106)(51,91)(52,76)(53,61)(54,102)(55,87)(56,72) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,57,43,71,29,85,15,99),(2,84,44,98,30,112,16,70),(3,111,45,69,31,83,17,97),(4,82,46,96,32,110,18,68),(5,109,47,67,33,81,19,95),(6,80,48,94,34,108,20,66),(7,107,49,65,35,79,21,93),(8,78,50,92,36,106,22,64),(9,105,51,63,37,77,23,91),(10,76,52,90,38,104,24,62),(11,103,53,61,39,75,25,89),(12,74,54,88,40,102,26,60),(13,101,55,59,41,73,27,87),(14,72,56,86,42,100,28,58)], [(1,57),(2,98),(3,83),(4,68),(5,109),(6,94),(7,79),(8,64),(9,105),(10,90),(11,75),(12,60),(13,101),(14,86),(15,71),(16,112),(17,97),(18,82),(19,67),(20,108),(21,93),(22,78),(23,63),(24,104),(25,89),(26,74),(27,59),(28,100),(29,85),(30,70),(31,111),(32,96),(33,81),(34,66),(35,107),(36,92),(37,77),(38,62),(39,103),(40,88),(41,73),(42,58),(43,99),(44,84),(45,69),(46,110),(47,95),(48,80),(49,65),(50,106),(51,91),(52,76),(53,61),(54,102),(55,87),(56,72)]])

58 conjugacy classes

class 1 2A2B2C2D4A4B4C4D7A7B7C8A8B8C8D8E8F8G14A···14I14J···14O28A···28F28G···28L56A···56L
order122224444777888888814···1414···1428···2828···2856···56
size11282822828222224282856562···28···84···48···84···4

58 irreducible representations

dim111111112222222224444
type++++++++++++++++-
imageC1C2C2C2C2C2C2C2D4D4D4D7C4○D4D14D14D14C7⋊D4D4.3D4D4×D7D42D7C56.44D4
kernelC56.44D4C56.C4C28.D4C28.10D4D28.2C4D4.D14C28.C23C14×SD16C56Dic14D28C2×SD16C2×C14C2×C8C2×D4C2×Q8C8C7C4C22C1
# reps11111111211323331223312

Matrix representation of C56.44D4 in GL4(𝔽113) generated by

09100
10210400
111598825
56898888
,
5349076
90575108
72568477
2162832
,
4879370
90575108
51693629
20848185
G:=sub<GL(4,GF(113))| [0,102,111,56,91,104,59,89,0,0,88,88,0,0,25,88],[53,90,72,21,49,57,56,6,0,5,84,28,76,108,77,32],[48,90,51,20,79,57,69,84,37,5,36,81,0,108,29,85] >;

C56.44D4 in GAP, Magma, Sage, TeX

C_{56}._{44}D_4
% in TeX

G:=Group("C56.44D4");
// GroupNames label

G:=SmallGroup(448,711);
// by ID

G=gap.SmallGroup(448,711);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,120,254,555,1123,297,136,438,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=c^2=1,b^4=a^28,b*a*b^-1=a^27,c*a*c=a^41,c*b*c=a^28*b^3>;
// generators/relations

׿
×
𝔽