Copied to
clipboard

G = C2×SD163D7order 448 = 26·7

Direct product of C2 and SD163D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×SD163D7, C28.8C24, SD1612D14, C56.44C23, D28.4C23, Dic14.4C23, C4.45(D4×D7), C143(C4○D8), (C4×D7).29D4, C28.83(C2×D4), C7⋊C8.21C23, C4.8(C23×D7), D4⋊D711C22, (C2×SD16)⋊16D7, D14.10(C2×D4), (C2×C8).265D14, (C8×D7)⋊18C22, D4.6(C22×D7), (C7×D4).6C23, C7⋊Q167C22, C8.41(C22×D7), (C14×SD16)⋊11C2, (C2×D4).184D14, (C7×Q8).2C23, Q8.2(C22×D7), D42D77C22, C56⋊C218C22, (C2×Q8).151D14, Dic7.69(C2×D4), Q82D76C22, (C4×D7).26C23, (C22×D7).62D4, C22.141(D4×D7), (C2×C28).525C23, (C2×C56).166C22, (C2×Dic7).216D4, (C7×SD16)⋊13C22, C14.109(C22×D4), (D4×C14).166C22, (C2×D28).178C22, (Q8×C14).148C22, (C2×Dic14).197C22, C73(C2×C4○D8), (D7×C2×C8)⋊10C2, C2.82(C2×D4×D7), (C2×D4⋊D7)⋊28C2, (C2×C56⋊C2)⋊32C2, (C2×C7⋊Q16)⋊26C2, (C2×D42D7)⋊25C2, (C2×Q82D7)⋊15C2, (C2×C14).398(C2×D4), (C2×C7⋊C8).284C22, (C2×C4×D7).258C22, (C2×C4).614(C22×D7), SmallGroup(448,1214)

Series: Derived Chief Lower central Upper central

C1C28 — C2×SD163D7
C1C7C14C28C4×D7C2×C4×D7C2×D42D7 — C2×SD163D7
C7C14C28 — C2×SD163D7
C1C22C2×C4C2×SD16

Generators and relations for C2×SD163D7
 G = < a,b,c,d,e | a2=b8=c2=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b3, bd=db, be=eb, cd=dc, ece=b4c, ede=d-1 >

Subgroups: 1284 in 266 conjugacy classes, 103 normal (33 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D7, C14, C14, C14, C2×C8, C2×C8, D8, SD16, SD16, Q16, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C22×C8, C2×D8, C2×SD16, C2×SD16, C2×Q16, C4○D8, C2×C4○D4, C7⋊C8, C56, Dic14, Dic14, C4×D7, C4×D7, D28, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C7×Q8, C22×D7, C22×D7, C22×C14, C2×C4○D8, C8×D7, C56⋊C2, C2×C7⋊C8, D4⋊D7, C7⋊Q16, C2×C56, C7×SD16, C2×Dic14, C2×C4×D7, C2×C4×D7, C2×D28, C2×D28, D42D7, D42D7, Q82D7, Q82D7, C22×Dic7, C2×C7⋊D4, D4×C14, Q8×C14, D7×C2×C8, C2×C56⋊C2, SD163D7, C2×D4⋊D7, C2×C7⋊Q16, C14×SD16, C2×D42D7, C2×Q82D7, C2×SD163D7
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C4○D8, C22×D4, C22×D7, C2×C4○D8, D4×D7, C23×D7, SD163D7, C2×D4×D7, C2×SD163D7

Smallest permutation representation of C2×SD163D7
On 224 points
Generators in S224
(1 196)(2 197)(3 198)(4 199)(5 200)(6 193)(7 194)(8 195)(9 159)(10 160)(11 153)(12 154)(13 155)(14 156)(15 157)(16 158)(17 181)(18 182)(19 183)(20 184)(21 177)(22 178)(23 179)(24 180)(25 221)(26 222)(27 223)(28 224)(29 217)(30 218)(31 219)(32 220)(33 121)(34 122)(35 123)(36 124)(37 125)(38 126)(39 127)(40 128)(41 207)(42 208)(43 201)(44 202)(45 203)(46 204)(47 205)(48 206)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 136)(56 129)(57 117)(58 118)(59 119)(60 120)(61 113)(62 114)(63 115)(64 116)(65 209)(66 210)(67 211)(68 212)(69 213)(70 214)(71 215)(72 216)(73 141)(74 142)(75 143)(76 144)(77 137)(78 138)(79 139)(80 140)(81 175)(82 176)(83 169)(84 170)(85 171)(86 172)(87 173)(88 174)(89 147)(90 148)(91 149)(92 150)(93 151)(94 152)(95 145)(96 146)(97 162)(98 163)(99 164)(100 165)(101 166)(102 167)(103 168)(104 161)(105 191)(106 192)(107 185)(108 186)(109 187)(110 188)(111 189)(112 190)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184)(185 186 187 188 189 190 191 192)(193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208)(209 210 211 212 213 214 215 216)(217 218 219 220 221 222 223 224)
(1 218)(2 221)(3 224)(4 219)(5 222)(6 217)(7 220)(8 223)(9 41)(10 44)(11 47)(12 42)(13 45)(14 48)(15 43)(16 46)(17 65)(18 68)(19 71)(20 66)(21 69)(22 72)(23 67)(24 70)(25 197)(26 200)(27 195)(28 198)(29 193)(30 196)(31 199)(32 194)(33 91)(34 94)(35 89)(36 92)(37 95)(38 90)(39 93)(40 96)(49 104)(50 99)(51 102)(52 97)(53 100)(54 103)(55 98)(56 101)(57 85)(58 88)(59 83)(60 86)(61 81)(62 84)(63 87)(64 82)(73 107)(74 110)(75 105)(76 108)(77 111)(78 106)(79 109)(80 112)(113 175)(114 170)(115 173)(116 176)(117 171)(118 174)(119 169)(120 172)(121 149)(122 152)(123 147)(124 150)(125 145)(126 148)(127 151)(128 146)(129 166)(130 161)(131 164)(132 167)(133 162)(134 165)(135 168)(136 163)(137 189)(138 192)(139 187)(140 190)(141 185)(142 188)(143 191)(144 186)(153 205)(154 208)(155 203)(156 206)(157 201)(158 204)(159 207)(160 202)(177 213)(178 216)(179 211)(180 214)(181 209)(182 212)(183 215)(184 210)
(1 54 36 172 183 160 191)(2 55 37 173 184 153 192)(3 56 38 174 177 154 185)(4 49 39 175 178 155 186)(5 50 40 176 179 156 187)(6 51 33 169 180 157 188)(7 52 34 170 181 158 189)(8 53 35 171 182 159 190)(9 112 195 134 123 85 18)(10 105 196 135 124 86 19)(11 106 197 136 125 87 20)(12 107 198 129 126 88 21)(13 108 199 130 127 81 22)(14 109 200 131 128 82 23)(15 110 193 132 121 83 24)(16 111 194 133 122 84 17)(25 163 145 63 66 47 78)(26 164 146 64 67 48 79)(27 165 147 57 68 41 80)(28 166 148 58 69 42 73)(29 167 149 59 70 43 74)(30 168 150 60 71 44 75)(31 161 151 61 72 45 76)(32 162 152 62 65 46 77)(89 117 212 207 140 223 100)(90 118 213 208 141 224 101)(91 119 214 201 142 217 102)(92 120 215 202 143 218 103)(93 113 216 203 144 219 104)(94 114 209 204 137 220 97)(95 115 210 205 138 221 98)(96 116 211 206 139 222 99)
(1 191)(2 192)(3 185)(4 186)(5 187)(6 188)(7 189)(8 190)(9 134)(10 135)(11 136)(12 129)(13 130)(14 131)(15 132)(16 133)(17 122)(18 123)(19 124)(20 125)(21 126)(22 127)(23 128)(24 121)(25 74)(26 75)(27 76)(28 77)(29 78)(30 79)(31 80)(32 73)(33 180)(34 181)(35 182)(36 183)(37 184)(38 177)(39 178)(40 179)(41 161)(42 162)(43 163)(44 164)(45 165)(46 166)(47 167)(48 168)(49 155)(50 156)(51 157)(52 158)(53 159)(54 160)(55 153)(56 154)(57 61)(58 62)(59 63)(60 64)(65 148)(66 149)(67 150)(68 151)(69 152)(70 145)(71 146)(72 147)(89 216)(90 209)(91 210)(92 211)(93 212)(94 213)(95 214)(96 215)(97 208)(98 201)(99 202)(100 203)(101 204)(102 205)(103 206)(104 207)(105 196)(106 197)(107 198)(108 199)(109 200)(110 193)(111 194)(112 195)(113 117)(114 118)(115 119)(116 120)(137 224)(138 217)(139 218)(140 219)(141 220)(142 221)(143 222)(144 223)

G:=sub<Sym(224)| (1,196)(2,197)(3,198)(4,199)(5,200)(6,193)(7,194)(8,195)(9,159)(10,160)(11,153)(12,154)(13,155)(14,156)(15,157)(16,158)(17,181)(18,182)(19,183)(20,184)(21,177)(22,178)(23,179)(24,180)(25,221)(26,222)(27,223)(28,224)(29,217)(30,218)(31,219)(32,220)(33,121)(34,122)(35,123)(36,124)(37,125)(38,126)(39,127)(40,128)(41,207)(42,208)(43,201)(44,202)(45,203)(46,204)(47,205)(48,206)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,129)(57,117)(58,118)(59,119)(60,120)(61,113)(62,114)(63,115)(64,116)(65,209)(66,210)(67,211)(68,212)(69,213)(70,214)(71,215)(72,216)(73,141)(74,142)(75,143)(76,144)(77,137)(78,138)(79,139)(80,140)(81,175)(82,176)(83,169)(84,170)(85,171)(86,172)(87,173)(88,174)(89,147)(90,148)(91,149)(92,150)(93,151)(94,152)(95,145)(96,146)(97,162)(98,163)(99,164)(100,165)(101,166)(102,167)(103,168)(104,161)(105,191)(106,192)(107,185)(108,186)(109,187)(110,188)(111,189)(112,190), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,218)(2,221)(3,224)(4,219)(5,222)(6,217)(7,220)(8,223)(9,41)(10,44)(11,47)(12,42)(13,45)(14,48)(15,43)(16,46)(17,65)(18,68)(19,71)(20,66)(21,69)(22,72)(23,67)(24,70)(25,197)(26,200)(27,195)(28,198)(29,193)(30,196)(31,199)(32,194)(33,91)(34,94)(35,89)(36,92)(37,95)(38,90)(39,93)(40,96)(49,104)(50,99)(51,102)(52,97)(53,100)(54,103)(55,98)(56,101)(57,85)(58,88)(59,83)(60,86)(61,81)(62,84)(63,87)(64,82)(73,107)(74,110)(75,105)(76,108)(77,111)(78,106)(79,109)(80,112)(113,175)(114,170)(115,173)(116,176)(117,171)(118,174)(119,169)(120,172)(121,149)(122,152)(123,147)(124,150)(125,145)(126,148)(127,151)(128,146)(129,166)(130,161)(131,164)(132,167)(133,162)(134,165)(135,168)(136,163)(137,189)(138,192)(139,187)(140,190)(141,185)(142,188)(143,191)(144,186)(153,205)(154,208)(155,203)(156,206)(157,201)(158,204)(159,207)(160,202)(177,213)(178,216)(179,211)(180,214)(181,209)(182,212)(183,215)(184,210), (1,54,36,172,183,160,191)(2,55,37,173,184,153,192)(3,56,38,174,177,154,185)(4,49,39,175,178,155,186)(5,50,40,176,179,156,187)(6,51,33,169,180,157,188)(7,52,34,170,181,158,189)(8,53,35,171,182,159,190)(9,112,195,134,123,85,18)(10,105,196,135,124,86,19)(11,106,197,136,125,87,20)(12,107,198,129,126,88,21)(13,108,199,130,127,81,22)(14,109,200,131,128,82,23)(15,110,193,132,121,83,24)(16,111,194,133,122,84,17)(25,163,145,63,66,47,78)(26,164,146,64,67,48,79)(27,165,147,57,68,41,80)(28,166,148,58,69,42,73)(29,167,149,59,70,43,74)(30,168,150,60,71,44,75)(31,161,151,61,72,45,76)(32,162,152,62,65,46,77)(89,117,212,207,140,223,100)(90,118,213,208,141,224,101)(91,119,214,201,142,217,102)(92,120,215,202,143,218,103)(93,113,216,203,144,219,104)(94,114,209,204,137,220,97)(95,115,210,205,138,221,98)(96,116,211,206,139,222,99), (1,191)(2,192)(3,185)(4,186)(5,187)(6,188)(7,189)(8,190)(9,134)(10,135)(11,136)(12,129)(13,130)(14,131)(15,132)(16,133)(17,122)(18,123)(19,124)(20,125)(21,126)(22,127)(23,128)(24,121)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,73)(33,180)(34,181)(35,182)(36,183)(37,184)(38,177)(39,178)(40,179)(41,161)(42,162)(43,163)(44,164)(45,165)(46,166)(47,167)(48,168)(49,155)(50,156)(51,157)(52,158)(53,159)(54,160)(55,153)(56,154)(57,61)(58,62)(59,63)(60,64)(65,148)(66,149)(67,150)(68,151)(69,152)(70,145)(71,146)(72,147)(89,216)(90,209)(91,210)(92,211)(93,212)(94,213)(95,214)(96,215)(97,208)(98,201)(99,202)(100,203)(101,204)(102,205)(103,206)(104,207)(105,196)(106,197)(107,198)(108,199)(109,200)(110,193)(111,194)(112,195)(113,117)(114,118)(115,119)(116,120)(137,224)(138,217)(139,218)(140,219)(141,220)(142,221)(143,222)(144,223)>;

G:=Group( (1,196)(2,197)(3,198)(4,199)(5,200)(6,193)(7,194)(8,195)(9,159)(10,160)(11,153)(12,154)(13,155)(14,156)(15,157)(16,158)(17,181)(18,182)(19,183)(20,184)(21,177)(22,178)(23,179)(24,180)(25,221)(26,222)(27,223)(28,224)(29,217)(30,218)(31,219)(32,220)(33,121)(34,122)(35,123)(36,124)(37,125)(38,126)(39,127)(40,128)(41,207)(42,208)(43,201)(44,202)(45,203)(46,204)(47,205)(48,206)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,129)(57,117)(58,118)(59,119)(60,120)(61,113)(62,114)(63,115)(64,116)(65,209)(66,210)(67,211)(68,212)(69,213)(70,214)(71,215)(72,216)(73,141)(74,142)(75,143)(76,144)(77,137)(78,138)(79,139)(80,140)(81,175)(82,176)(83,169)(84,170)(85,171)(86,172)(87,173)(88,174)(89,147)(90,148)(91,149)(92,150)(93,151)(94,152)(95,145)(96,146)(97,162)(98,163)(99,164)(100,165)(101,166)(102,167)(103,168)(104,161)(105,191)(106,192)(107,185)(108,186)(109,187)(110,188)(111,189)(112,190), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,218)(2,221)(3,224)(4,219)(5,222)(6,217)(7,220)(8,223)(9,41)(10,44)(11,47)(12,42)(13,45)(14,48)(15,43)(16,46)(17,65)(18,68)(19,71)(20,66)(21,69)(22,72)(23,67)(24,70)(25,197)(26,200)(27,195)(28,198)(29,193)(30,196)(31,199)(32,194)(33,91)(34,94)(35,89)(36,92)(37,95)(38,90)(39,93)(40,96)(49,104)(50,99)(51,102)(52,97)(53,100)(54,103)(55,98)(56,101)(57,85)(58,88)(59,83)(60,86)(61,81)(62,84)(63,87)(64,82)(73,107)(74,110)(75,105)(76,108)(77,111)(78,106)(79,109)(80,112)(113,175)(114,170)(115,173)(116,176)(117,171)(118,174)(119,169)(120,172)(121,149)(122,152)(123,147)(124,150)(125,145)(126,148)(127,151)(128,146)(129,166)(130,161)(131,164)(132,167)(133,162)(134,165)(135,168)(136,163)(137,189)(138,192)(139,187)(140,190)(141,185)(142,188)(143,191)(144,186)(153,205)(154,208)(155,203)(156,206)(157,201)(158,204)(159,207)(160,202)(177,213)(178,216)(179,211)(180,214)(181,209)(182,212)(183,215)(184,210), (1,54,36,172,183,160,191)(2,55,37,173,184,153,192)(3,56,38,174,177,154,185)(4,49,39,175,178,155,186)(5,50,40,176,179,156,187)(6,51,33,169,180,157,188)(7,52,34,170,181,158,189)(8,53,35,171,182,159,190)(9,112,195,134,123,85,18)(10,105,196,135,124,86,19)(11,106,197,136,125,87,20)(12,107,198,129,126,88,21)(13,108,199,130,127,81,22)(14,109,200,131,128,82,23)(15,110,193,132,121,83,24)(16,111,194,133,122,84,17)(25,163,145,63,66,47,78)(26,164,146,64,67,48,79)(27,165,147,57,68,41,80)(28,166,148,58,69,42,73)(29,167,149,59,70,43,74)(30,168,150,60,71,44,75)(31,161,151,61,72,45,76)(32,162,152,62,65,46,77)(89,117,212,207,140,223,100)(90,118,213,208,141,224,101)(91,119,214,201,142,217,102)(92,120,215,202,143,218,103)(93,113,216,203,144,219,104)(94,114,209,204,137,220,97)(95,115,210,205,138,221,98)(96,116,211,206,139,222,99), (1,191)(2,192)(3,185)(4,186)(5,187)(6,188)(7,189)(8,190)(9,134)(10,135)(11,136)(12,129)(13,130)(14,131)(15,132)(16,133)(17,122)(18,123)(19,124)(20,125)(21,126)(22,127)(23,128)(24,121)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,73)(33,180)(34,181)(35,182)(36,183)(37,184)(38,177)(39,178)(40,179)(41,161)(42,162)(43,163)(44,164)(45,165)(46,166)(47,167)(48,168)(49,155)(50,156)(51,157)(52,158)(53,159)(54,160)(55,153)(56,154)(57,61)(58,62)(59,63)(60,64)(65,148)(66,149)(67,150)(68,151)(69,152)(70,145)(71,146)(72,147)(89,216)(90,209)(91,210)(92,211)(93,212)(94,213)(95,214)(96,215)(97,208)(98,201)(99,202)(100,203)(101,204)(102,205)(103,206)(104,207)(105,196)(106,197)(107,198)(108,199)(109,200)(110,193)(111,194)(112,195)(113,117)(114,118)(115,119)(116,120)(137,224)(138,217)(139,218)(140,219)(141,220)(142,221)(143,222)(144,223) );

G=PermutationGroup([[(1,196),(2,197),(3,198),(4,199),(5,200),(6,193),(7,194),(8,195),(9,159),(10,160),(11,153),(12,154),(13,155),(14,156),(15,157),(16,158),(17,181),(18,182),(19,183),(20,184),(21,177),(22,178),(23,179),(24,180),(25,221),(26,222),(27,223),(28,224),(29,217),(30,218),(31,219),(32,220),(33,121),(34,122),(35,123),(36,124),(37,125),(38,126),(39,127),(40,128),(41,207),(42,208),(43,201),(44,202),(45,203),(46,204),(47,205),(48,206),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,136),(56,129),(57,117),(58,118),(59,119),(60,120),(61,113),(62,114),(63,115),(64,116),(65,209),(66,210),(67,211),(68,212),(69,213),(70,214),(71,215),(72,216),(73,141),(74,142),(75,143),(76,144),(77,137),(78,138),(79,139),(80,140),(81,175),(82,176),(83,169),(84,170),(85,171),(86,172),(87,173),(88,174),(89,147),(90,148),(91,149),(92,150),(93,151),(94,152),(95,145),(96,146),(97,162),(98,163),(99,164),(100,165),(101,166),(102,167),(103,168),(104,161),(105,191),(106,192),(107,185),(108,186),(109,187),(110,188),(111,189),(112,190)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184),(185,186,187,188,189,190,191,192),(193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208),(209,210,211,212,213,214,215,216),(217,218,219,220,221,222,223,224)], [(1,218),(2,221),(3,224),(4,219),(5,222),(6,217),(7,220),(8,223),(9,41),(10,44),(11,47),(12,42),(13,45),(14,48),(15,43),(16,46),(17,65),(18,68),(19,71),(20,66),(21,69),(22,72),(23,67),(24,70),(25,197),(26,200),(27,195),(28,198),(29,193),(30,196),(31,199),(32,194),(33,91),(34,94),(35,89),(36,92),(37,95),(38,90),(39,93),(40,96),(49,104),(50,99),(51,102),(52,97),(53,100),(54,103),(55,98),(56,101),(57,85),(58,88),(59,83),(60,86),(61,81),(62,84),(63,87),(64,82),(73,107),(74,110),(75,105),(76,108),(77,111),(78,106),(79,109),(80,112),(113,175),(114,170),(115,173),(116,176),(117,171),(118,174),(119,169),(120,172),(121,149),(122,152),(123,147),(124,150),(125,145),(126,148),(127,151),(128,146),(129,166),(130,161),(131,164),(132,167),(133,162),(134,165),(135,168),(136,163),(137,189),(138,192),(139,187),(140,190),(141,185),(142,188),(143,191),(144,186),(153,205),(154,208),(155,203),(156,206),(157,201),(158,204),(159,207),(160,202),(177,213),(178,216),(179,211),(180,214),(181,209),(182,212),(183,215),(184,210)], [(1,54,36,172,183,160,191),(2,55,37,173,184,153,192),(3,56,38,174,177,154,185),(4,49,39,175,178,155,186),(5,50,40,176,179,156,187),(6,51,33,169,180,157,188),(7,52,34,170,181,158,189),(8,53,35,171,182,159,190),(9,112,195,134,123,85,18),(10,105,196,135,124,86,19),(11,106,197,136,125,87,20),(12,107,198,129,126,88,21),(13,108,199,130,127,81,22),(14,109,200,131,128,82,23),(15,110,193,132,121,83,24),(16,111,194,133,122,84,17),(25,163,145,63,66,47,78),(26,164,146,64,67,48,79),(27,165,147,57,68,41,80),(28,166,148,58,69,42,73),(29,167,149,59,70,43,74),(30,168,150,60,71,44,75),(31,161,151,61,72,45,76),(32,162,152,62,65,46,77),(89,117,212,207,140,223,100),(90,118,213,208,141,224,101),(91,119,214,201,142,217,102),(92,120,215,202,143,218,103),(93,113,216,203,144,219,104),(94,114,209,204,137,220,97),(95,115,210,205,138,221,98),(96,116,211,206,139,222,99)], [(1,191),(2,192),(3,185),(4,186),(5,187),(6,188),(7,189),(8,190),(9,134),(10,135),(11,136),(12,129),(13,130),(14,131),(15,132),(16,133),(17,122),(18,123),(19,124),(20,125),(21,126),(22,127),(23,128),(24,121),(25,74),(26,75),(27,76),(28,77),(29,78),(30,79),(31,80),(32,73),(33,180),(34,181),(35,182),(36,183),(37,184),(38,177),(39,178),(40,179),(41,161),(42,162),(43,163),(44,164),(45,165),(46,166),(47,167),(48,168),(49,155),(50,156),(51,157),(52,158),(53,159),(54,160),(55,153),(56,154),(57,61),(58,62),(59,63),(60,64),(65,148),(66,149),(67,150),(68,151),(69,152),(70,145),(71,146),(72,147),(89,216),(90,209),(91,210),(92,211),(93,212),(94,213),(95,214),(96,215),(97,208),(98,201),(99,202),(100,203),(101,204),(102,205),(103,206),(104,207),(105,196),(106,197),(107,198),(108,199),(109,200),(110,193),(111,194),(112,195),(113,117),(114,118),(115,119),(116,120),(137,224),(138,217),(139,218),(140,219),(141,220),(142,221),(143,222),(144,223)]])

70 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J7A7B7C8A8B8C8D8E8F8G8H14A···14I14J···14O28A···28F28G···28L56A···56L
order122222222244444444447778888888814···1414···1428···2828···2856···56
size111144141428282244777728282222222141414142···28···84···48···84···4

70 irreducible representations

dim111111111222222222444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4D4D7D14D14D14D14C4○D8D4×D7D4×D7SD163D7
kernelC2×SD163D7D7×C2×C8C2×C56⋊C2SD163D7C2×D4⋊D7C2×C7⋊Q16C14×SD16C2×D42D7C2×Q82D7C4×D7C2×Dic7C22×D7C2×SD16C2×C8SD16C2×D4C2×Q8C14C4C22C2
# reps11181111121133123383312

Matrix representation of C2×SD163D7 in GL4(𝔽113) generated by

112000
011200
001120
000112
,
69000
01800
001120
000112
,
06900
95000
001120
000112
,
1000
0100
0079112
0010
,
1000
011200
0079112
002534
G:=sub<GL(4,GF(113))| [112,0,0,0,0,112,0,0,0,0,112,0,0,0,0,112],[69,0,0,0,0,18,0,0,0,0,112,0,0,0,0,112],[0,95,0,0,69,0,0,0,0,0,112,0,0,0,0,112],[1,0,0,0,0,1,0,0,0,0,79,1,0,0,112,0],[1,0,0,0,0,112,0,0,0,0,79,25,0,0,112,34] >;

C2×SD163D7 in GAP, Magma, Sage, TeX

C_2\times {\rm SD}_{16}\rtimes_3D_7
% in TeX

G:=Group("C2xSD16:3D7");
// GroupNames label

G:=SmallGroup(448,1214);
// by ID

G=gap.SmallGroup(448,1214);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,1123,185,136,438,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^8=c^2=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^3,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^4*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽