Extensions 1→N→G→Q→1 with N=C2×C4○D28 and Q=C2

Direct product G=N×Q with N=C2×C4○D28 and Q=C2
dρLabelID
C22×C4○D28224C2^2xC4oD28448,1368

Semidirect products G=N:Q with N=C2×C4○D28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C4○D28)⋊1C2 = D2814D4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):1C2448,268
(C2×C4○D28)⋊2C2 = C42.276D14φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):2C2448,930
(C2×C4○D28)⋊3C2 = C24.27D14φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28):3C2448,943
(C2×C4○D28)⋊4C2 = C14.2- 1+4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):4C2448,960
(C2×C4○D28)⋊5C2 = C4212D14φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28):5C2448,1000
(C2×C4○D28)⋊6C2 = C42.228D14φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):6C2448,1001
(C2×C4○D28)⋊7C2 = D2823D4φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28):7C2448,1003
(C2×C4○D28)⋊8C2 = D2824D4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):8C2448,1004
(C2×C4○D28)⋊9C2 = Dic1423D4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):9C2448,1005
(C2×C4○D28)⋊10C2 = Dic1424D4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):10C2448,1006
(C2×C4○D28)⋊11C2 = C14.1212+ 1+4φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28):11C2448,1107
(C2×C4○D28)⋊12C2 = C14.822- 1+4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):12C2448,1108
(C2×C4○D28)⋊13C2 = C2×D567C2φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):13C2448,1194
(C2×C4○D28)⋊14C2 = C24.72D14φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28):14C2448,1244
(C2×C4○D28)⋊15C2 = D2817D4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):15C2448,571
(C2×C4○D28)⋊16C2 = C14.2+ 1+4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):16C2448,963
(C2×C4○D28)⋊17C2 = C428D14φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28):17C2448,977
(C2×C4○D28)⋊18C2 = C429D14φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28):18C2448,978
(C2×C4○D28)⋊19C2 = Dic1420D4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):19C2448,1052
(C2×C4○D28)⋊20C2 = C14.382+ 1+4φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28):20C2448,1060
(C2×C4○D28)⋊21C2 = C14.722- 1+4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):21C2448,1061
(C2×C4○D28)⋊22C2 = D2820D4φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28):22C2448,1065
(C2×C4○D28)⋊23C2 = C14.172- 1+4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):23C2448,1082
(C2×C4○D28)⋊24C2 = D2822D4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):24C2448,1084
(C2×C4○D28)⋊25C2 = Dic1422D4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):25C2448,1086
(C2×C4○D28)⋊26C2 = C2×C8⋊D14φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28):26C2448,1199
(C2×C4○D28)⋊27C2 = C56.9C23φ: C2/C1C2 ⊆ Out C2×C4○D281124(C2xC4oD28):27C2448,1201
(C2×C4○D28)⋊28C2 = C2×D4.D14φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28):28C2448,1246
(C2×C4○D28)⋊29C2 = C24.41D14φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28):29C2448,1258
(C2×C4○D28)⋊30C2 = C2×D4.8D14φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):30C2448,1274
(C2×C4○D28)⋊31C2 = C28.C24φ: C2/C1C2 ⊆ Out C2×C4○D281124(C2xC4oD28):31C2448,1275
(C2×C4○D28)⋊32C2 = (C2×C28)⋊17D4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):32C2448,1285
(C2×C4○D28)⋊33C2 = C14.1082- 1+4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):33C2448,1286
(C2×C4○D28)⋊34C2 = C2×D46D14φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28):34C2448,1371
(C2×C4○D28)⋊35C2 = C2×Q8.10D14φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):35C2448,1374
(C2×C4○D28)⋊36C2 = C2×D7×C4○D4φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28):36C2448,1375
(C2×C4○D28)⋊37C2 = C2×D48D14φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28):37C2448,1376
(C2×C4○D28)⋊38C2 = C2×D4.10D14φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28):38C2448,1377
(C2×C4○D28)⋊39C2 = C14.C25φ: C2/C1C2 ⊆ Out C2×C4○D281124(C2xC4oD28):39C2448,1378

Non-split extensions G=N.Q with N=C2×C4○D28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C4○D28).1C2 = D14⋊C8⋊C2φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).1C2448,261
(C2×C4○D28).2C2 = D28.32D4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).2C2448,267
(C2×C4○D28).3C2 = C2×Dic14⋊C4φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28).3C2448,461
(C2×C4○D28).4C2 = (C22×C8)⋊D7φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).4C2448,644
(C2×C4○D28).5C2 = C23.23D28φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).5C2448,647
(C2×C4○D28).6C2 = C4○D28⋊C4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).6C2448,500
(C2×C4○D28).7C2 = C4.(C2×D28)φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).7C2448,536
(C2×C4○D28).8C2 = C424D14φ: C2/C1C2 ⊆ Out C2×C4○D281124(C2xC4oD28).8C2448,539
(C2×C4○D28).9C2 = (C2×D28)⋊13C4φ: C2/C1C2 ⊆ Out C2×C4○D281124(C2xC4oD28).9C2448,540
(C2×C4○D28).10C2 = D28.37D4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).10C2448,581
(C2×C4○D28).11C2 = (C2×D28).14C4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).11C2448,663
(C2×C4○D28).12C2 = M4(2).31D14φ: C2/C1C2 ⊆ Out C2×C4○D281124(C2xC4oD28).12C2448,666
(C2×C4○D28).13C2 = C23.49D28φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).13C2448,667
(C2×C4○D28).14C2 = C2×D284C4φ: C2/C1C2 ⊆ Out C2×C4○D28112(C2xC4oD28).14C2448,672
(C2×C4○D28).15C2 = C23.20D28φ: C2/C1C2 ⊆ Out C2×C4○D281124(C2xC4oD28).15C2448,673
(C2×C4○D28).16C2 = C14.82+ 1+4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).16C2448,957
(C2×C4○D28).17C2 = C42.188D14φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).17C2448,975
(C2×C4○D28).18C2 = C42.91D14φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).18C2448,976
(C2×C4○D28).19C2 = C42.92D14φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).19C2448,979
(C2×C4○D28).20C2 = C14.162- 1+4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).20C2448,1081
(C2×C4○D28).21C2 = C2×D28.C4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).21C2448,1197
(C2×C4○D28).22C2 = C28.70C24φ: C2/C1C2 ⊆ Out C2×C4○D281124(C2xC4oD28).22C2448,1198
(C2×C4○D28).23C2 = C2×C8.D14φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).23C2448,1200
(C2×C4○D28).24C2 = C2×C28.C23φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).24C2448,1261
(C2×C4○D28).25C2 = C14.442- 1+4φ: C2/C1C2 ⊆ Out C2×C4○D28224(C2xC4oD28).25C2448,1269
(C2×C4○D28).26C2 = C4×C4○D28φ: trivial image224(C2xC4oD28).26C2448,927
(C2×C4○D28).27C2 = C2×D28.2C4φ: trivial image224(C2xC4oD28).27C2448,1191

׿
×
𝔽