Copied to
clipboard

G = C2×C8⋊D14order 448 = 26·7

Direct product of C2 and C8⋊D14

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C8⋊D14, C562C23, D569C22, D285C23, C28.58C24, C23.52D28, M4(2)⋊17D14, Dic145C23, (C2×C8)⋊4D14, C82(C22×D7), (C2×D56)⋊14C2, (C2×C56)⋊7C22, (C2×C4).57D28, C4.48(C2×D28), C141(C8⋊C22), (C2×C28).203D4, C28.238(C2×D4), C56⋊C28C22, (C2×M4(2))⋊3D7, C4.55(C23×D7), C4○D2818C22, (C2×D28)⋊49C22, (C22×D28)⋊17C2, (C14×M4(2))⋊3C2, C14.25(C22×D4), C22.73(C2×D28), C2.27(C22×D28), (C2×C28).511C23, (C22×C4).265D14, (C22×C14).118D4, (C2×Dic14)⋊57C22, (C7×M4(2))⋊19C22, (C22×C28).266C22, C71(C2×C8⋊C22), (C2×C56⋊C2)⋊4C2, (C2×C4○D28)⋊26C2, (C2×C14).62(C2×D4), (C2×C4).223(C22×D7), SmallGroup(448,1199)

Series: Derived Chief Lower central Upper central

C1C28 — C2×C8⋊D14
C1C7C14C28D28C2×D28C22×D28 — C2×C8⋊D14
C7C14C28 — C2×C8⋊D14
C1C22C22×C4C2×M4(2)

Generators and relations for C2×C8⋊D14
 G = < a,b,c,d | a2=b8=c14=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b5, dbd=b-1, dcd=c-1 >

Subgroups: 1892 in 298 conjugacy classes, 111 normal (25 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C14, C2×C8, M4(2), D8, SD16, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C24, Dic7, C28, C28, D14, C2×C14, C2×C14, C2×C14, C2×M4(2), C2×D8, C2×SD16, C8⋊C22, C22×D4, C2×C4○D4, C56, Dic14, Dic14, C4×D7, D28, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×C14, C2×C8⋊C22, C56⋊C2, D56, C2×C56, C7×M4(2), C2×Dic14, C2×C4×D7, C2×D28, C2×D28, C2×D28, C4○D28, C4○D28, C2×C7⋊D4, C22×C28, C23×D7, C2×C56⋊C2, C2×D56, C8⋊D14, C14×M4(2), C22×D28, C2×C4○D28, C2×C8⋊D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C8⋊C22, C22×D4, D28, C22×D7, C2×C8⋊C22, C2×D28, C23×D7, C8⋊D14, C22×D28, C2×C8⋊D14

Smallest permutation representation of C2×C8⋊D14
On 112 points
Generators in S112
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(57 64)(58 65)(59 66)(60 67)(61 68)(62 69)(63 70)(71 78)(72 79)(73 80)(74 81)(75 82)(76 83)(77 84)(85 108)(86 109)(87 110)(88 111)(89 112)(90 99)(91 100)(92 101)(93 102)(94 103)(95 104)(96 105)(97 106)(98 107)
(1 93 64 53 39 109 82 18)(2 110 65 19 40 94 83 54)(3 95 66 55 41 111 84 20)(4 112 67 21 42 96 71 56)(5 97 68 43 29 99 72 22)(6 100 69 23 30 98 73 44)(7 85 70 45 31 101 74 24)(8 102 57 25 32 86 75 46)(9 87 58 47 33 103 76 26)(10 104 59 27 34 88 77 48)(11 89 60 49 35 105 78 28)(12 106 61 15 36 90 79 50)(13 91 62 51 37 107 80 16)(14 108 63 17 38 92 81 52)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 14)(2 13)(3 12)(4 11)(5 10)(6 9)(7 8)(15 111)(16 110)(17 109)(18 108)(19 107)(20 106)(21 105)(22 104)(23 103)(24 102)(25 101)(26 100)(27 99)(28 112)(29 34)(30 33)(31 32)(35 42)(36 41)(37 40)(38 39)(43 88)(44 87)(45 86)(46 85)(47 98)(48 97)(49 96)(50 95)(51 94)(52 93)(53 92)(54 91)(55 90)(56 89)(57 74)(58 73)(59 72)(60 71)(61 84)(62 83)(63 82)(64 81)(65 80)(66 79)(67 78)(68 77)(69 76)(70 75)

G:=sub<Sym(112)| (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(85,108)(86,109)(87,110)(88,111)(89,112)(90,99)(91,100)(92,101)(93,102)(94,103)(95,104)(96,105)(97,106)(98,107), (1,93,64,53,39,109,82,18)(2,110,65,19,40,94,83,54)(3,95,66,55,41,111,84,20)(4,112,67,21,42,96,71,56)(5,97,68,43,29,99,72,22)(6,100,69,23,30,98,73,44)(7,85,70,45,31,101,74,24)(8,102,57,25,32,86,75,46)(9,87,58,47,33,103,76,26)(10,104,59,27,34,88,77,48)(11,89,60,49,35,105,78,28)(12,106,61,15,36,90,79,50)(13,91,62,51,37,107,80,16)(14,108,63,17,38,92,81,52), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,111)(16,110)(17,109)(18,108)(19,107)(20,106)(21,105)(22,104)(23,103)(24,102)(25,101)(26,100)(27,99)(28,112)(29,34)(30,33)(31,32)(35,42)(36,41)(37,40)(38,39)(43,88)(44,87)(45,86)(46,85)(47,98)(48,97)(49,96)(50,95)(51,94)(52,93)(53,92)(54,91)(55,90)(56,89)(57,74)(58,73)(59,72)(60,71)(61,84)(62,83)(63,82)(64,81)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)>;

G:=Group( (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(85,108)(86,109)(87,110)(88,111)(89,112)(90,99)(91,100)(92,101)(93,102)(94,103)(95,104)(96,105)(97,106)(98,107), (1,93,64,53,39,109,82,18)(2,110,65,19,40,94,83,54)(3,95,66,55,41,111,84,20)(4,112,67,21,42,96,71,56)(5,97,68,43,29,99,72,22)(6,100,69,23,30,98,73,44)(7,85,70,45,31,101,74,24)(8,102,57,25,32,86,75,46)(9,87,58,47,33,103,76,26)(10,104,59,27,34,88,77,48)(11,89,60,49,35,105,78,28)(12,106,61,15,36,90,79,50)(13,91,62,51,37,107,80,16)(14,108,63,17,38,92,81,52), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,111)(16,110)(17,109)(18,108)(19,107)(20,106)(21,105)(22,104)(23,103)(24,102)(25,101)(26,100)(27,99)(28,112)(29,34)(30,33)(31,32)(35,42)(36,41)(37,40)(38,39)(43,88)(44,87)(45,86)(46,85)(47,98)(48,97)(49,96)(50,95)(51,94)(52,93)(53,92)(54,91)(55,90)(56,89)(57,74)(58,73)(59,72)(60,71)(61,84)(62,83)(63,82)(64,81)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75) );

G=PermutationGroup([[(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(57,64),(58,65),(59,66),(60,67),(61,68),(62,69),(63,70),(71,78),(72,79),(73,80),(74,81),(75,82),(76,83),(77,84),(85,108),(86,109),(87,110),(88,111),(89,112),(90,99),(91,100),(92,101),(93,102),(94,103),(95,104),(96,105),(97,106),(98,107)], [(1,93,64,53,39,109,82,18),(2,110,65,19,40,94,83,54),(3,95,66,55,41,111,84,20),(4,112,67,21,42,96,71,56),(5,97,68,43,29,99,72,22),(6,100,69,23,30,98,73,44),(7,85,70,45,31,101,74,24),(8,102,57,25,32,86,75,46),(9,87,58,47,33,103,76,26),(10,104,59,27,34,88,77,48),(11,89,60,49,35,105,78,28),(12,106,61,15,36,90,79,50),(13,91,62,51,37,107,80,16),(14,108,63,17,38,92,81,52)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,111),(16,110),(17,109),(18,108),(19,107),(20,106),(21,105),(22,104),(23,103),(24,102),(25,101),(26,100),(27,99),(28,112),(29,34),(30,33),(31,32),(35,42),(36,41),(37,40),(38,39),(43,88),(44,87),(45,86),(46,85),(47,98),(48,97),(49,96),(50,95),(51,94),(52,93),(53,92),(54,91),(55,90),(56,89),(57,74),(58,73),(59,72),(60,71),(61,84),(62,83),(63,82),(64,81),(65,80),(66,79),(67,78),(68,77),(69,76),(70,75)]])

82 conjugacy classes

class 1 2A2B2C2D2E2F···2K4A4B4C4D4E4F7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28R56A···56X
order1222222···2444444777888814···1414···1428···2828···2856···56
size11112228···282222282822244442···24···42···24···44···4

82 irreducible representations

dim11111112222222244
type+++++++++++++++++
imageC1C2C2C2C2C2C2D4D4D7D14D14D14D28D28C8⋊C22C8⋊D14
kernelC2×C8⋊D14C2×C56⋊C2C2×D56C8⋊D14C14×M4(2)C22×D28C2×C4○D28C2×C28C22×C14C2×M4(2)C2×C8M4(2)C22×C4C2×C4C23C14C2
# reps12281113136123186212

Matrix representation of C2×C8⋊D14 in GL6(𝔽113)

11200000
01120000
001000
000100
000010
000001
,
11220000
11210000
009672744
00461042544
0095945846
00144355
,
100000
010000
00342500
00888800
00107010488
001071071040
,
11200000
11210000
00342500
001127900
00638910913
004426514

G:=sub<GL(6,GF(113))| [112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[112,112,0,0,0,0,2,1,0,0,0,0,0,0,9,46,95,1,0,0,67,104,94,44,0,0,27,25,58,3,0,0,44,44,46,55],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,34,88,107,107,0,0,25,88,0,107,0,0,0,0,104,104,0,0,0,0,88,0],[112,112,0,0,0,0,0,1,0,0,0,0,0,0,34,112,63,44,0,0,25,79,89,26,0,0,0,0,109,51,0,0,0,0,13,4] >;

C2×C8⋊D14 in GAP, Magma, Sage, TeX

C_2\times C_8\rtimes D_{14}
% in TeX

G:=Group("C2xC8:D14");
// GroupNames label

G:=SmallGroup(448,1199);
// by ID

G=gap.SmallGroup(448,1199);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,675,297,80,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^14=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽