Copied to
clipboard

G = M4(2).31D14order 448 = 26·7

4th non-split extension by M4(2) of D14 acting via D14/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: M4(2).31D14, (C2×C4).50D28, C4.66(C2×D28), (C2×C28).174D4, C28.418(C2×D4), C23.21(C4×D7), C4.56(D14⋊C4), (C2×M4(2))⋊12D7, C28.46D415C2, C4.12D2815C2, C28.67(C22⋊C4), (C14×M4(2))⋊20C2, (C2×C28).417C23, C22.7(D14⋊C4), (C22×C4).140D14, (C2×D28).251C22, C4.Dic7.42C22, (C22×C28).189C22, (C7×M4(2)).34C22, (C2×Dic14).278C22, C73(M4(2).8C22), (C2×C4×D7).4C4, C22.21(C2×C4×D7), C2.31(C2×D14⋊C4), (C2×C4).160(C4×D7), (C2×C7⋊D4).13C4, C4.111(C2×C7⋊D4), (C2×C28).109(C2×C4), (C2×C4○D28).12C2, (C2×C4).77(C7⋊D4), C14.59(C2×C22⋊C4), (C2×C4.Dic7)⋊16C2, (C2×Dic7).5(C2×C4), (C22×D7).6(C2×C4), (C22×C14).71(C2×C4), (C2×C14).15(C22×C4), (C2×C4).121(C22×D7), (C2×C14).66(C22⋊C4), SmallGroup(448,666)

Series: Derived Chief Lower central Upper central

C1C2×C14 — M4(2).31D14
C1C7C14C28C2×C28C2×D28C2×C4○D28 — M4(2).31D14
C7C14C2×C14 — M4(2).31D14
C1C4C22×C4C2×M4(2)

Generators and relations for M4(2).31D14
 G = < a,b,c,d | a8=b2=1, c14=d2=a4, bab=a5, ac=ca, dad-1=ab, bc=cb, bd=db, dcd-1=c13 >

Subgroups: 740 in 150 conjugacy classes, 59 normal (41 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic7, C28, D14, C2×C14, C2×C14, C4.D4, C4.10D4, C2×M4(2), C2×M4(2), C2×C4○D4, C7⋊C8, C56, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C22×D7, C22×C14, M4(2).8C22, C2×C7⋊C8, C4.Dic7, C4.Dic7, C2×C56, C7×M4(2), C7×M4(2), C2×Dic14, C2×C4×D7, C2×D28, C4○D28, C2×C7⋊D4, C22×C28, C28.46D4, C4.12D28, C2×C4.Dic7, C14×M4(2), C2×C4○D28, M4(2).31D14
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, D14, C2×C22⋊C4, C4×D7, D28, C7⋊D4, C22×D7, M4(2).8C22, D14⋊C4, C2×C4×D7, C2×D28, C2×C7⋊D4, C2×D14⋊C4, M4(2).31D14

Smallest permutation representation of M4(2).31D14
On 112 points
Generators in S112
(1 48 82 98 15 34 68 112)(2 49 83 99 16 35 69 85)(3 50 84 100 17 36 70 86)(4 51 57 101 18 37 71 87)(5 52 58 102 19 38 72 88)(6 53 59 103 20 39 73 89)(7 54 60 104 21 40 74 90)(8 55 61 105 22 41 75 91)(9 56 62 106 23 42 76 92)(10 29 63 107 24 43 77 93)(11 30 64 108 25 44 78 94)(12 31 65 109 26 45 79 95)(13 32 66 110 27 46 80 96)(14 33 67 111 28 47 81 97)
(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 81 15 67)(2 66 16 80)(3 79 17 65)(4 64 18 78)(5 77 19 63)(6 62 20 76)(7 75 21 61)(8 60 22 74)(9 73 23 59)(10 58 24 72)(11 71 25 57)(12 84 26 70)(13 69 27 83)(14 82 28 68)(29 88 43 102)(30 101 44 87)(31 86 45 100)(32 99 46 85)(33 112 47 98)(34 97 48 111)(35 110 49 96)(36 95 50 109)(37 108 51 94)(38 93 52 107)(39 106 53 92)(40 91 54 105)(41 104 55 90)(42 89 56 103)

G:=sub<Sym(112)| (1,48,82,98,15,34,68,112)(2,49,83,99,16,35,69,85)(3,50,84,100,17,36,70,86)(4,51,57,101,18,37,71,87)(5,52,58,102,19,38,72,88)(6,53,59,103,20,39,73,89)(7,54,60,104,21,40,74,90)(8,55,61,105,22,41,75,91)(9,56,62,106,23,42,76,92)(10,29,63,107,24,43,77,93)(11,30,64,108,25,44,78,94)(12,31,65,109,26,45,79,95)(13,32,66,110,27,46,80,96)(14,33,67,111,28,47,81,97), (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,81,15,67)(2,66,16,80)(3,79,17,65)(4,64,18,78)(5,77,19,63)(6,62,20,76)(7,75,21,61)(8,60,22,74)(9,73,23,59)(10,58,24,72)(11,71,25,57)(12,84,26,70)(13,69,27,83)(14,82,28,68)(29,88,43,102)(30,101,44,87)(31,86,45,100)(32,99,46,85)(33,112,47,98)(34,97,48,111)(35,110,49,96)(36,95,50,109)(37,108,51,94)(38,93,52,107)(39,106,53,92)(40,91,54,105)(41,104,55,90)(42,89,56,103)>;

G:=Group( (1,48,82,98,15,34,68,112)(2,49,83,99,16,35,69,85)(3,50,84,100,17,36,70,86)(4,51,57,101,18,37,71,87)(5,52,58,102,19,38,72,88)(6,53,59,103,20,39,73,89)(7,54,60,104,21,40,74,90)(8,55,61,105,22,41,75,91)(9,56,62,106,23,42,76,92)(10,29,63,107,24,43,77,93)(11,30,64,108,25,44,78,94)(12,31,65,109,26,45,79,95)(13,32,66,110,27,46,80,96)(14,33,67,111,28,47,81,97), (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,81,15,67)(2,66,16,80)(3,79,17,65)(4,64,18,78)(5,77,19,63)(6,62,20,76)(7,75,21,61)(8,60,22,74)(9,73,23,59)(10,58,24,72)(11,71,25,57)(12,84,26,70)(13,69,27,83)(14,82,28,68)(29,88,43,102)(30,101,44,87)(31,86,45,100)(32,99,46,85)(33,112,47,98)(34,97,48,111)(35,110,49,96)(36,95,50,109)(37,108,51,94)(38,93,52,107)(39,106,53,92)(40,91,54,105)(41,104,55,90)(42,89,56,103) );

G=PermutationGroup([[(1,48,82,98,15,34,68,112),(2,49,83,99,16,35,69,85),(3,50,84,100,17,36,70,86),(4,51,57,101,18,37,71,87),(5,52,58,102,19,38,72,88),(6,53,59,103,20,39,73,89),(7,54,60,104,21,40,74,90),(8,55,61,105,22,41,75,91),(9,56,62,106,23,42,76,92),(10,29,63,107,24,43,77,93),(11,30,64,108,25,44,78,94),(12,31,65,109,26,45,79,95),(13,32,66,110,27,46,80,96),(14,33,67,111,28,47,81,97)], [(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,81,15,67),(2,66,16,80),(3,79,17,65),(4,64,18,78),(5,77,19,63),(6,62,20,76),(7,75,21,61),(8,60,22,74),(9,73,23,59),(10,58,24,72),(11,71,25,57),(12,84,26,70),(13,69,27,83),(14,82,28,68),(29,88,43,102),(30,101,44,87),(31,86,45,100),(32,99,46,85),(33,112,47,98),(34,97,48,111),(35,110,49,96),(36,95,50,109),(37,108,51,94),(38,93,52,107),(39,106,53,92),(40,91,54,105),(41,104,55,90),(42,89,56,103)]])

82 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G7A7B7C8A8B8C8D8E8F8G8H14A···14I14J···14O28A···28L28M···28R56A···56X
order122222244444447778888888814···1414···1428···2828···2856···56
size1122228281122228282224444282828282···24···42···24···44···4

82 irreducible representations

dim111111112222222244
type+++++++++++
imageC1C2C2C2C2C2C4C4D4D7D14D14C4×D7D28C7⋊D4C4×D7M4(2).8C22M4(2).31D14
kernelM4(2).31D14C28.46D4C4.12D28C2×C4.Dic7C14×M4(2)C2×C4○D28C2×C4×D7C2×C7⋊D4C2×C28C2×M4(2)M4(2)C22×C4C2×C4C2×C4C2×C4C23C7C1
# reps122111444363612126212

Matrix representation of M4(2).31D14 in GL4(𝔽113) generated by

00150
00015
2210100
129100
,
1000
0100
001120
000112
,
777700
365800
007777
003658
,
595400
825400
005954
008254
G:=sub<GL(4,GF(113))| [0,0,22,12,0,0,101,91,15,0,0,0,0,15,0,0],[1,0,0,0,0,1,0,0,0,0,112,0,0,0,0,112],[77,36,0,0,77,58,0,0,0,0,77,36,0,0,77,58],[59,82,0,0,54,54,0,0,0,0,59,82,0,0,54,54] >;

M4(2).31D14 in GAP, Magma, Sage, TeX

M_4(2)._{31}D_{14}
% in TeX

G:=Group("M4(2).31D14");
// GroupNames label

G:=SmallGroup(448,666);
// by ID

G=gap.SmallGroup(448,666);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,422,58,1123,136,438,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=1,c^14=d^2=a^4,b*a*b=a^5,a*c=c*a,d*a*d^-1=a*b,b*c=c*b,b*d=d*b,d*c*d^-1=c^13>;
// generators/relations

׿
×
𝔽