Extensions 1→N→G→Q→1 with N=D48D14 and Q=C2

Direct product G=N×Q with N=D48D14 and Q=C2
dρLabelID
C2×D48D14112C2xD4:8D14448,1376

Semidirect products G=N:Q with N=D48D14 and Q=C2
extensionφ:Q→Out NdρLabelID
D48D141C2 = D44D28φ: C2/C1C2 ⊆ Out D48D14564+D4:8D14:1C2448,356
D48D142C2 = D2818D4φ: C2/C1C2 ⊆ Out D48D14568+D4:8D14:2C2448,732
D48D143C2 = D4.11D28φ: C2/C1C2 ⊆ Out D48D141124D4:8D14:3C2448,1204
D48D144C2 = D4.12D28φ: C2/C1C2 ⊆ Out D48D141124+D4:8D14:4C2448,1205
D48D145C2 = D815D14φ: C2/C1C2 ⊆ Out D48D141124+D4:8D14:5C2448,1222
D48D146C2 = D811D14φ: C2/C1C2 ⊆ Out D48D141124D4:8D14:6C2448,1223
D48D147C2 = D85D14φ: C2/C1C2 ⊆ Out D48D141128+D4:8D14:7C2448,1227
D48D148C2 = C56.C23φ: C2/C1C2 ⊆ Out D48D141128+D4:8D14:8C2448,1231
D48D149C2 = D28.32C23φ: C2/C1C2 ⊆ Out D48D141128+D4:8D14:9C2448,1288
D48D1410C2 = D28.34C23φ: C2/C1C2 ⊆ Out D48D141128+D4:8D14:10C2448,1290
D48D1411C2 = D7×2+ 1+4φ: C2/C1C2 ⊆ Out D48D14568+D4:8D14:11C2448,1379
D48D1412C2 = D28.39C23φ: C2/C1C2 ⊆ Out D48D141128+D4:8D14:12C2448,1382
D48D1413C2 = C14.C25φ: trivial image1124D4:8D14:13C2448,1378

Non-split extensions G=N.Q with N=D48D14 and Q=C2
extensionφ:Q→Out NdρLabelID
D48D14.1C2 = M4(2)⋊D14φ: C2/C1C2 ⊆ Out D48D141124D4:8D14.1C2448,359
D48D14.2C2 = D28.39D4φ: C2/C1C2 ⊆ Out D48D141128+D4:8D14.2C2448,736

׿
×
𝔽