Copied to
clipboard

G = C4⋊C426D14order 448 = 26·7

9th semidirect product of C4⋊C4 and D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C426D14, (C4×D7)⋊13D4, (C2×Q8)⋊15D14, C4.186(D4×D7), C22⋊Q826D7, D144(C4○D4), C4⋊D2823C2, C287D435C2, D14.42(C2×D4), C28.231(C2×D4), D28⋊C424C2, C22⋊D2815C2, (Q8×C14)⋊6C22, D14⋊C419C22, D143Q813C2, (C2×D28)⋊24C22, C4⋊Dic735C22, C22⋊C4.56D14, Dic7.64(C2×D4), C14.73(C22×D4), Dic74D414C2, D14.5D415C2, (C2×C14).171C24, (C2×C28).598C23, Dic7⋊C417C22, C75(C22.19C24), C221(Q82D7), (C4×Dic7)⋊27C22, (C22×C4).372D14, (C2×Dic7).86C23, C22.192(C23×D7), C23.188(C22×D7), (C22×C28).251C22, (C22×C14).199C23, (C23×D7).109C22, (C22×D7).193C23, (C22×Dic7).225C22, C2.46(C2×D4×D7), (D7×C22×C4)⋊5C2, C2.48(D7×C4○D4), (C2×C4×D7)⋊17C22, C4⋊C47D724C2, (C7×C22⋊Q8)⋊7C2, (C2×C14)⋊6(C4○D4), (C7×C4⋊C4)⋊18C22, (C2×Q82D7)⋊5C2, C14.160(C2×C4○D4), C2.16(C2×Q82D7), (C2×C4).46(C22×D7), (C2×C7⋊D4).38C22, (C7×C22⋊C4).26C22, SmallGroup(448,1080)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4⋊C426D14
C1C7C14C2×C14C22×D7C23×D7D7×C22×C4 — C4⋊C426D14
C7C2×C14 — C4⋊C426D14
C1C22C22⋊Q8

Generators and relations for C4⋊C426D14
 G = < a,b,c,d | a4=b4=c14=d2=1, bab-1=a-1, ac=ca, ad=da, cbc-1=a2b-1, dbd=a2b, dcd=c-1 >

Subgroups: 1692 in 330 conjugacy classes, 109 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C24, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C2×C14, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C23×C4, C2×C4○D4, C4×D7, C4×D7, D28, C2×Dic7, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C2×C28, C7×Q8, C22×D7, C22×D7, C22×D7, C22×C14, C22.19C24, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C7×C22⋊C4, C7×C4⋊C4, C7×C4⋊C4, C2×C4×D7, C2×C4×D7, C2×C4×D7, C2×D28, C2×D28, Q82D7, C22×Dic7, C2×C7⋊D4, C22×C28, Q8×C14, C23×D7, Dic74D4, C22⋊D28, C4⋊C47D7, D28⋊C4, D14.5D4, C4⋊D28, C287D4, D143Q8, C7×C22⋊Q8, D7×C22×C4, C2×Q82D7, C4⋊C426D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, C24, D14, C22×D4, C2×C4○D4, C22×D7, C22.19C24, D4×D7, Q82D7, C23×D7, C2×D4×D7, C2×Q82D7, D7×C4○D4, C4⋊C426D14

Smallest permutation representation of C4⋊C426D14
On 112 points
Generators in S112
(1 44 15 9)(2 45 16 10)(3 46 17 11)(4 47 18 12)(5 48 19 13)(6 49 20 14)(7 43 21 8)(22 55 32 40)(23 56 33 41)(24 50 34 42)(25 51 35 36)(26 52 29 37)(27 53 30 38)(28 54 31 39)(57 102 94 83)(58 103 95 84)(59 104 96 71)(60 105 97 72)(61 106 98 73)(62 107 85 74)(63 108 86 75)(64 109 87 76)(65 110 88 77)(66 111 89 78)(67 112 90 79)(68 99 91 80)(69 100 92 81)(70 101 93 82)
(1 70 32 86)(2 64 33 94)(3 58 34 88)(4 66 35 96)(5 60 29 90)(6 68 30 98)(7 62 31 92)(8 107 54 81)(9 101 55 75)(10 109 56 83)(11 103 50 77)(12 111 51 71)(13 105 52 79)(14 99 53 73)(15 93 22 63)(16 87 23 57)(17 95 24 65)(18 89 25 59)(19 97 26 67)(20 91 27 61)(21 85 28 69)(36 104 47 78)(37 112 48 72)(38 106 49 80)(39 100 43 74)(40 108 44 82)(41 102 45 76)(42 110 46 84)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 31)(2 30)(3 29)(4 35)(5 34)(6 33)(7 32)(8 55)(9 54)(10 53)(11 52)(12 51)(13 50)(14 56)(15 28)(16 27)(17 26)(18 25)(19 24)(20 23)(21 22)(36 47)(37 46)(38 45)(39 44)(40 43)(41 49)(42 48)(57 68)(58 67)(59 66)(60 65)(61 64)(62 63)(69 70)(71 78)(72 77)(73 76)(74 75)(79 84)(80 83)(81 82)(85 86)(87 98)(88 97)(89 96)(90 95)(91 94)(92 93)(99 102)(100 101)(103 112)(104 111)(105 110)(106 109)(107 108)

G:=sub<Sym(112)| (1,44,15,9)(2,45,16,10)(3,46,17,11)(4,47,18,12)(5,48,19,13)(6,49,20,14)(7,43,21,8)(22,55,32,40)(23,56,33,41)(24,50,34,42)(25,51,35,36)(26,52,29,37)(27,53,30,38)(28,54,31,39)(57,102,94,83)(58,103,95,84)(59,104,96,71)(60,105,97,72)(61,106,98,73)(62,107,85,74)(63,108,86,75)(64,109,87,76)(65,110,88,77)(66,111,89,78)(67,112,90,79)(68,99,91,80)(69,100,92,81)(70,101,93,82), (1,70,32,86)(2,64,33,94)(3,58,34,88)(4,66,35,96)(5,60,29,90)(6,68,30,98)(7,62,31,92)(8,107,54,81)(9,101,55,75)(10,109,56,83)(11,103,50,77)(12,111,51,71)(13,105,52,79)(14,99,53,73)(15,93,22,63)(16,87,23,57)(17,95,24,65)(18,89,25,59)(19,97,26,67)(20,91,27,61)(21,85,28,69)(36,104,47,78)(37,112,48,72)(38,106,49,80)(39,100,43,74)(40,108,44,82)(41,102,45,76)(42,110,46,84), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,31)(2,30)(3,29)(4,35)(5,34)(6,33)(7,32)(8,55)(9,54)(10,53)(11,52)(12,51)(13,50)(14,56)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(36,47)(37,46)(38,45)(39,44)(40,43)(41,49)(42,48)(57,68)(58,67)(59,66)(60,65)(61,64)(62,63)(69,70)(71,78)(72,77)(73,76)(74,75)(79,84)(80,83)(81,82)(85,86)(87,98)(88,97)(89,96)(90,95)(91,94)(92,93)(99,102)(100,101)(103,112)(104,111)(105,110)(106,109)(107,108)>;

G:=Group( (1,44,15,9)(2,45,16,10)(3,46,17,11)(4,47,18,12)(5,48,19,13)(6,49,20,14)(7,43,21,8)(22,55,32,40)(23,56,33,41)(24,50,34,42)(25,51,35,36)(26,52,29,37)(27,53,30,38)(28,54,31,39)(57,102,94,83)(58,103,95,84)(59,104,96,71)(60,105,97,72)(61,106,98,73)(62,107,85,74)(63,108,86,75)(64,109,87,76)(65,110,88,77)(66,111,89,78)(67,112,90,79)(68,99,91,80)(69,100,92,81)(70,101,93,82), (1,70,32,86)(2,64,33,94)(3,58,34,88)(4,66,35,96)(5,60,29,90)(6,68,30,98)(7,62,31,92)(8,107,54,81)(9,101,55,75)(10,109,56,83)(11,103,50,77)(12,111,51,71)(13,105,52,79)(14,99,53,73)(15,93,22,63)(16,87,23,57)(17,95,24,65)(18,89,25,59)(19,97,26,67)(20,91,27,61)(21,85,28,69)(36,104,47,78)(37,112,48,72)(38,106,49,80)(39,100,43,74)(40,108,44,82)(41,102,45,76)(42,110,46,84), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,31)(2,30)(3,29)(4,35)(5,34)(6,33)(7,32)(8,55)(9,54)(10,53)(11,52)(12,51)(13,50)(14,56)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(36,47)(37,46)(38,45)(39,44)(40,43)(41,49)(42,48)(57,68)(58,67)(59,66)(60,65)(61,64)(62,63)(69,70)(71,78)(72,77)(73,76)(74,75)(79,84)(80,83)(81,82)(85,86)(87,98)(88,97)(89,96)(90,95)(91,94)(92,93)(99,102)(100,101)(103,112)(104,111)(105,110)(106,109)(107,108) );

G=PermutationGroup([[(1,44,15,9),(2,45,16,10),(3,46,17,11),(4,47,18,12),(5,48,19,13),(6,49,20,14),(7,43,21,8),(22,55,32,40),(23,56,33,41),(24,50,34,42),(25,51,35,36),(26,52,29,37),(27,53,30,38),(28,54,31,39),(57,102,94,83),(58,103,95,84),(59,104,96,71),(60,105,97,72),(61,106,98,73),(62,107,85,74),(63,108,86,75),(64,109,87,76),(65,110,88,77),(66,111,89,78),(67,112,90,79),(68,99,91,80),(69,100,92,81),(70,101,93,82)], [(1,70,32,86),(2,64,33,94),(3,58,34,88),(4,66,35,96),(5,60,29,90),(6,68,30,98),(7,62,31,92),(8,107,54,81),(9,101,55,75),(10,109,56,83),(11,103,50,77),(12,111,51,71),(13,105,52,79),(14,99,53,73),(15,93,22,63),(16,87,23,57),(17,95,24,65),(18,89,25,59),(19,97,26,67),(20,91,27,61),(21,85,28,69),(36,104,47,78),(37,112,48,72),(38,106,49,80),(39,100,43,74),(40,108,44,82),(41,102,45,76),(42,110,46,84)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,31),(2,30),(3,29),(4,35),(5,34),(6,33),(7,32),(8,55),(9,54),(10,53),(11,52),(12,51),(13,50),(14,56),(15,28),(16,27),(17,26),(18,25),(19,24),(20,23),(21,22),(36,47),(37,46),(38,45),(39,44),(40,43),(41,49),(42,48),(57,68),(58,67),(59,66),(60,65),(61,64),(62,63),(69,70),(71,78),(72,77),(73,76),(74,75),(79,84),(80,83),(81,82),(85,86),(87,98),(88,97),(89,96),(90,95),(91,94),(92,93),(99,102),(100,101),(103,112),(104,111),(105,110),(106,109),(107,108)]])

70 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P7A7B7C14A···14I14J···14O28A···28L28M···28X
order122222222222444444444444444477714···1414···1428···2828···28
size111122141414142828222244447777141428282222···24···44···48···8

70 irreducible representations

dim11111111111122222222444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D7C4○D4C4○D4D14D14D14D14D4×D7Q82D7D7×C4○D4
kernelC4⋊C426D14Dic74D4C22⋊D28C4⋊C47D7D28⋊C4D14.5D4C4⋊D28C287D4D143Q8C7×C22⋊Q8D7×C22×C4C2×Q82D7C4×D7C22⋊Q8D14C2×C14C22⋊C4C4⋊C4C22×C4C2×Q8C4C22C2
# reps12212211111143446933666

Matrix representation of C4⋊C426D14 in GL6(𝔽29)

12160000
0170000
0028000
0002800
000010
000001
,
28180000
1610000
001000
000100
000001
0000280
,
100000
010000
0018400
0025400
000010
0000028
,
28180000
010000
000100
001000
0000280
0000028

G:=sub<GL(6,GF(29))| [12,0,0,0,0,0,16,17,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[28,16,0,0,0,0,18,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,28,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,25,0,0,0,0,4,4,0,0,0,0,0,0,1,0,0,0,0,0,0,28],[28,0,0,0,0,0,18,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,28,0,0,0,0,0,0,28] >;

C4⋊C426D14 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_{26}D_{14}
% in TeX

G:=Group("C4:C4:26D14");
// GroupNames label

G:=SmallGroup(448,1080);
// by ID

G=gap.SmallGroup(448,1080);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,100,1123,794,297,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^2*b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽