Copied to
clipboard

G = (C3×C39)⋊C4order 468 = 22·32·13

1st semidirect product of C3×C39 and C4 acting faithfully

metabelian, soluble, monomial, A-group

Aliases: (C3×C39)⋊1C4, C13⋊(C32⋊C4), C32⋊(C13⋊C4), C3⋊D39.C2, SmallGroup(468,41)

Series: Derived Chief Lower central Upper central

C1C3×C39 — (C3×C39)⋊C4
C1C13C3×C39C3⋊D39 — (C3×C39)⋊C4
C3×C39 — (C3×C39)⋊C4
C1

Generators and relations for (C3×C39)⋊C4
 G = < a,b,c | a3=b39=c4=1, ab=ba, cac-1=a-1b13, cbc-1=ab31 >

117C2
2C3
2C3
117C4
78S3
78S3
9D13
2C39
2C39
13C3⋊S3
9C13⋊C4
6D39
6D39
13C32⋊C4

Smallest permutation representation of (C3×C39)⋊C4
On 78 points
Generators in S78
(1 37 23)(2 38 24)(3 39 25)(4 27 26)(5 28 14)(6 29 15)(7 30 16)(8 31 17)(9 32 18)(10 33 19)(11 34 20)(12 35 21)(13 36 22)(40 66 53)(41 67 54)(42 68 55)(43 69 56)(44 70 57)(45 71 58)(46 72 59)(47 73 60)(48 74 61)(49 75 62)(50 76 63)(51 77 64)(52 78 65)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)
(1 40 12 76)(2 61 11 55)(3 43 10 73)(4 64 9 52)(5 46 8 70)(6 67 7 49)(13 58)(14 72 31 44)(15 54 30 62)(16 75 29 41)(17 57 28 59)(18 78 27 77)(19 60 39 56)(20 42 38 74)(21 63 37 53)(22 45 36 71)(23 66 35 50)(24 48 34 68)(25 69 33 47)(26 51 32 65)

G:=sub<Sym(78)| (1,37,23)(2,38,24)(3,39,25)(4,27,26)(5,28,14)(6,29,15)(7,30,16)(8,31,17)(9,32,18)(10,33,19)(11,34,20)(12,35,21)(13,36,22)(40,66,53)(41,67,54)(42,68,55)(43,69,56)(44,70,57)(45,71,58)(46,72,59)(47,73,60)(48,74,61)(49,75,62)(50,76,63)(51,77,64)(52,78,65), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78), (1,40,12,76)(2,61,11,55)(3,43,10,73)(4,64,9,52)(5,46,8,70)(6,67,7,49)(13,58)(14,72,31,44)(15,54,30,62)(16,75,29,41)(17,57,28,59)(18,78,27,77)(19,60,39,56)(20,42,38,74)(21,63,37,53)(22,45,36,71)(23,66,35,50)(24,48,34,68)(25,69,33,47)(26,51,32,65)>;

G:=Group( (1,37,23)(2,38,24)(3,39,25)(4,27,26)(5,28,14)(6,29,15)(7,30,16)(8,31,17)(9,32,18)(10,33,19)(11,34,20)(12,35,21)(13,36,22)(40,66,53)(41,67,54)(42,68,55)(43,69,56)(44,70,57)(45,71,58)(46,72,59)(47,73,60)(48,74,61)(49,75,62)(50,76,63)(51,77,64)(52,78,65), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78), (1,40,12,76)(2,61,11,55)(3,43,10,73)(4,64,9,52)(5,46,8,70)(6,67,7,49)(13,58)(14,72,31,44)(15,54,30,62)(16,75,29,41)(17,57,28,59)(18,78,27,77)(19,60,39,56)(20,42,38,74)(21,63,37,53)(22,45,36,71)(23,66,35,50)(24,48,34,68)(25,69,33,47)(26,51,32,65) );

G=PermutationGroup([[(1,37,23),(2,38,24),(3,39,25),(4,27,26),(5,28,14),(6,29,15),(7,30,16),(8,31,17),(9,32,18),(10,33,19),(11,34,20),(12,35,21),(13,36,22),(40,66,53),(41,67,54),(42,68,55),(43,69,56),(44,70,57),(45,71,58),(46,72,59),(47,73,60),(48,74,61),(49,75,62),(50,76,63),(51,77,64),(52,78,65)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)], [(1,40,12,76),(2,61,11,55),(3,43,10,73),(4,64,9,52),(5,46,8,70),(6,67,7,49),(13,58),(14,72,31,44),(15,54,30,62),(16,75,29,41),(17,57,28,59),(18,78,27,77),(19,60,39,56),(20,42,38,74),(21,63,37,53),(22,45,36,71),(23,66,35,50),(24,48,34,68),(25,69,33,47),(26,51,32,65)]])

33 conjugacy classes

class 1  2 3A3B4A4B13A13B13C39A···39X
order12334413131339···39
size1117441171174444···4

33 irreducible representations

dim111444
type+++++
imageC1C2C4C32⋊C4C13⋊C4(C3×C39)⋊C4
kernel(C3×C39)⋊C4C3⋊D39C3×C39C13C32C1
# reps1122324

Matrix representation of (C3×C39)⋊C4 in GL4(𝔽157) generated by

411100
3815200
444121111
1171302435
,
13210300
1476000
131514858
8633895
,
1333315131
101881154
331194
56774115
G:=sub<GL(4,GF(157))| [4,38,44,117,111,152,4,130,0,0,121,24,0,0,111,35],[132,147,131,8,103,60,51,63,0,0,48,38,0,0,58,95],[133,101,3,56,33,8,31,77,151,81,1,41,31,154,94,15] >;

(C3×C39)⋊C4 in GAP, Magma, Sage, TeX

(C_3\times C_{39})\rtimes C_4
% in TeX

G:=Group("(C3xC39):C4");
// GroupNames label

G:=SmallGroup(468,41);
// by ID

G=gap.SmallGroup(468,41);
# by ID

G:=PCGroup([5,-2,-2,-3,3,-13,10,422,67,643,248,7204,5409]);
// Polycyclic

G:=Group<a,b,c|a^3=b^39=c^4=1,a*b=b*a,c*a*c^-1=a^-1*b^13,c*b*c^-1=a*b^31>;
// generators/relations

Export

Subgroup lattice of (C3×C39)⋊C4 in TeX

׿
×
𝔽