Copied to
clipboard

G = C3×S3×D13order 468 = 22·32·13

Direct product of C3, S3 and D13

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3×S3×D13, C394D6, D393C6, C323D26, C134(S3×C6), C395(C2×C6), C31(C6×D13), (S3×C39)⋊2C2, (S3×C13)⋊3C6, (C3×D39)⋊1C2, (C3×D13)⋊3C6, (C3×C39)⋊1C22, (C32×D13)⋊1C2, SmallGroup(468,42)

Series: Derived Chief Lower central Upper central

C1C39 — C3×S3×D13
C1C13C39C3×C39C32×D13 — C3×S3×D13
C39 — C3×S3×D13
C1C3

Generators and relations for C3×S3×D13
 G = < a,b,c,d,e | a3=b3=c2=d13=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

3C2
13C2
39C2
2C3
39C22
3C6
13C6
13C6
13S3
26C6
39C6
3C26
3D13
2C39
13D6
39C2×C6
13C3×S3
13C3×C6
3D26
2C3×D13
3C3×D13
3C78
13S3×C6
3C6×D13

Smallest permutation representation of C3×S3×D13
On 78 points
Generators in S78
(1 21 35)(2 22 36)(3 23 37)(4 24 38)(5 25 39)(6 26 27)(7 14 28)(8 15 29)(9 16 30)(10 17 31)(11 18 32)(12 19 33)(13 20 34)(40 57 68)(41 58 69)(42 59 70)(43 60 71)(44 61 72)(45 62 73)(46 63 74)(47 64 75)(48 65 76)(49 53 77)(50 54 78)(51 55 66)(52 56 67)
(1 21 35)(2 22 36)(3 23 37)(4 24 38)(5 25 39)(6 26 27)(7 14 28)(8 15 29)(9 16 30)(10 17 31)(11 18 32)(12 19 33)(13 20 34)(40 68 57)(41 69 58)(42 70 59)(43 71 60)(44 72 61)(45 73 62)(46 74 63)(47 75 64)(48 76 65)(49 77 53)(50 78 54)(51 66 55)(52 67 56)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 40)(14 64)(15 65)(16 53)(17 54)(18 55)(19 56)(20 57)(21 58)(22 59)(23 60)(24 61)(25 62)(26 63)(27 74)(28 75)(29 76)(30 77)(31 78)(32 66)(33 67)(34 68)(35 69)(36 70)(37 71)(38 72)(39 73)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(15 26)(16 25)(17 24)(18 23)(19 22)(20 21)(27 29)(30 39)(31 38)(32 37)(33 36)(34 35)(40 41)(42 52)(43 51)(44 50)(45 49)(46 48)(53 62)(54 61)(55 60)(56 59)(57 58)(63 65)(66 71)(67 70)(68 69)(72 78)(73 77)(74 76)

G:=sub<Sym(78)| (1,21,35)(2,22,36)(3,23,37)(4,24,38)(5,25,39)(6,26,27)(7,14,28)(8,15,29)(9,16,30)(10,17,31)(11,18,32)(12,19,33)(13,20,34)(40,57,68)(41,58,69)(42,59,70)(43,60,71)(44,61,72)(45,62,73)(46,63,74)(47,64,75)(48,65,76)(49,53,77)(50,54,78)(51,55,66)(52,56,67), (1,21,35)(2,22,36)(3,23,37)(4,24,38)(5,25,39)(6,26,27)(7,14,28)(8,15,29)(9,16,30)(10,17,31)(11,18,32)(12,19,33)(13,20,34)(40,68,57)(41,69,58)(42,70,59)(43,71,60)(44,72,61)(45,73,62)(46,74,63)(47,75,64)(48,76,65)(49,77,53)(50,78,54)(51,66,55)(52,67,56), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,40)(14,64)(15,65)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,74)(28,75)(29,76)(30,77)(31,78)(32,66)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72)(39,73), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(27,29)(30,39)(31,38)(32,37)(33,36)(34,35)(40,41)(42,52)(43,51)(44,50)(45,49)(46,48)(53,62)(54,61)(55,60)(56,59)(57,58)(63,65)(66,71)(67,70)(68,69)(72,78)(73,77)(74,76)>;

G:=Group( (1,21,35)(2,22,36)(3,23,37)(4,24,38)(5,25,39)(6,26,27)(7,14,28)(8,15,29)(9,16,30)(10,17,31)(11,18,32)(12,19,33)(13,20,34)(40,57,68)(41,58,69)(42,59,70)(43,60,71)(44,61,72)(45,62,73)(46,63,74)(47,64,75)(48,65,76)(49,53,77)(50,54,78)(51,55,66)(52,56,67), (1,21,35)(2,22,36)(3,23,37)(4,24,38)(5,25,39)(6,26,27)(7,14,28)(8,15,29)(9,16,30)(10,17,31)(11,18,32)(12,19,33)(13,20,34)(40,68,57)(41,69,58)(42,70,59)(43,71,60)(44,72,61)(45,73,62)(46,74,63)(47,75,64)(48,76,65)(49,77,53)(50,78,54)(51,66,55)(52,67,56), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,40)(14,64)(15,65)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,74)(28,75)(29,76)(30,77)(31,78)(32,66)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72)(39,73), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(27,29)(30,39)(31,38)(32,37)(33,36)(34,35)(40,41)(42,52)(43,51)(44,50)(45,49)(46,48)(53,62)(54,61)(55,60)(56,59)(57,58)(63,65)(66,71)(67,70)(68,69)(72,78)(73,77)(74,76) );

G=PermutationGroup([[(1,21,35),(2,22,36),(3,23,37),(4,24,38),(5,25,39),(6,26,27),(7,14,28),(8,15,29),(9,16,30),(10,17,31),(11,18,32),(12,19,33),(13,20,34),(40,57,68),(41,58,69),(42,59,70),(43,60,71),(44,61,72),(45,62,73),(46,63,74),(47,64,75),(48,65,76),(49,53,77),(50,54,78),(51,55,66),(52,56,67)], [(1,21,35),(2,22,36),(3,23,37),(4,24,38),(5,25,39),(6,26,27),(7,14,28),(8,15,29),(9,16,30),(10,17,31),(11,18,32),(12,19,33),(13,20,34),(40,68,57),(41,69,58),(42,70,59),(43,71,60),(44,72,61),(45,73,62),(46,74,63),(47,75,64),(48,76,65),(49,77,53),(50,78,54),(51,66,55),(52,67,56)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,40),(14,64),(15,65),(16,53),(17,54),(18,55),(19,56),(20,57),(21,58),(22,59),(23,60),(24,61),(25,62),(26,63),(27,74),(28,75),(29,76),(30,77),(31,78),(32,66),(33,67),(34,68),(35,69),(36,70),(37,71),(38,72),(39,73)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(15,26),(16,25),(17,24),(18,23),(19,22),(20,21),(27,29),(30,39),(31,38),(32,37),(33,36),(34,35),(40,41),(42,52),(43,51),(44,50),(45,49),(46,48),(53,62),(54,61),(55,60),(56,59),(57,58),(63,65),(66,71),(67,70),(68,69),(72,78),(73,77),(74,76)]])

72 conjugacy classes

class 1 2A2B2C3A3B3C3D3E6A6B6C6D6E6F6G6H6I13A···13F26A···26F39A···39L39M···39AD78A···78L
order12223333366666666613···1326···2639···3939···3978···78
size1313391122233131326262639392···26···62···24···46···6

72 irreducible representations

dim111111112222222244
type+++++++++
imageC1C2C2C2C3C6C6C6S3D6C3×S3D13S3×C6D26C3×D13C6×D13S3×D13C3×S3×D13
kernelC3×S3×D13C32×D13S3×C39C3×D39S3×D13S3×C13C3×D13D39C3×D13C39D13C3×S3C13C32S3C3C3C1
# reps111122221126261212612

Matrix representation of C3×S3×D13 in GL4(𝔽79) generated by

55000
05500
0010
0001
,
55000
02300
0010
0001
,
0100
1000
00780
00078
,
1000
0100
00481
00780
,
1000
0100
002567
005254
G:=sub<GL(4,GF(79))| [55,0,0,0,0,55,0,0,0,0,1,0,0,0,0,1],[55,0,0,0,0,23,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,78,0,0,0,0,78],[1,0,0,0,0,1,0,0,0,0,48,78,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,25,52,0,0,67,54] >;

C3×S3×D13 in GAP, Magma, Sage, TeX

C_3\times S_3\times D_{13}
% in TeX

G:=Group("C3xS3xD13");
// GroupNames label

G:=SmallGroup(468,42);
// by ID

G=gap.SmallGroup(468,42);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-13,248,10804]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^13=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C3×S3×D13 in TeX

׿
×
𝔽