Copied to
clipboard

G = A4×C13⋊C3order 468 = 22·32·13

Direct product of A4 and C13⋊C3

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C13⋊C3, C13⋊A4⋊C3, (A4×C13)⋊C3, C131(C3×A4), (C2×C26)⋊C32, (C22×C13⋊C3)⋊C3, C221(C3×C13⋊C3), SmallGroup(468,32)

Series: Derived Chief Lower central Upper central

C1C2×C26 — A4×C13⋊C3
C1C13C2×C26C22×C13⋊C3 — A4×C13⋊C3
C2×C26 — A4×C13⋊C3
C1

Generators and relations for A4×C13⋊C3
 G = < a,b,c,d,e | a2=b2=c3=d13=e3=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d9 >

3C2
4C3
13C3
52C3
52C3
39C6
52C32
3C26
4C13⋊C3
4C13⋊C3
4C39
13C2×C6
13A4
13A4
3C2×C13⋊C3
4C3×C13⋊C3
13C3×A4

Character table of A4×C13⋊C3

 class 123A3B3C3D3E3F3G3H6A6B13A13B13C13D26A26B26C26D39A39B39C39D39E39F39G39H
 size 13441313525252523939333399991212121212121212
ρ11111111111111111111111111111    trivial
ρ211ζ3ζ3211ζ3ζ32ζ32ζ31111111111ζ32ζ32ζ32ζ32ζ3ζ3ζ3ζ3    linear of order 3
ρ31111ζ3ζ32ζ32ζ3ζ32ζ3ζ32ζ31111111111111111    linear of order 3
ρ411ζ32ζ311ζ32ζ3ζ3ζ321111111111ζ3ζ3ζ3ζ3ζ32ζ32ζ32ζ32    linear of order 3
ρ51111ζ32ζ3ζ3ζ32ζ3ζ32ζ3ζ321111111111111111    linear of order 3
ρ611ζ3ζ32ζ32ζ3ζ32ζ311ζ3ζ3211111111ζ32ζ32ζ32ζ32ζ3ζ3ζ3ζ3    linear of order 3
ρ711ζ3ζ32ζ3ζ3211ζ3ζ32ζ32ζ311111111ζ32ζ32ζ32ζ32ζ3ζ3ζ3ζ3    linear of order 3
ρ811ζ32ζ3ζ3ζ32ζ3ζ3211ζ32ζ311111111ζ3ζ3ζ3ζ3ζ32ζ32ζ32ζ32    linear of order 3
ρ911ζ32ζ3ζ32ζ311ζ32ζ3ζ3ζ3211111111ζ3ζ3ζ3ζ3ζ32ζ32ζ32ζ32    linear of order 3
ρ103-100330000-1-13333-1-1-1-100000000    orthogonal lifted from A4
ρ113-100-3+3-3/2-3-3-3/20000ζ6ζ653333-1-1-1-100000000    complex lifted from C3×A4
ρ123-100-3-3-3/2-3+3-3/20000ζ65ζ63333-1-1-1-100000000    complex lifted from C3×A4
ρ13333300000000ζ1311138137ζ13121310134ζ13913313ζ136135132ζ1311138137ζ13913313ζ13121310134ζ136135132ζ136135132ζ13121310134ζ1311138137ζ13913313ζ13913313ζ136135132ζ13121310134ζ1311138137    complex lifted from C13⋊C3
ρ14333300000000ζ13121310134ζ136135132ζ1311138137ζ13913313ζ13121310134ζ1311138137ζ136135132ζ13913313ζ13913313ζ136135132ζ13121310134ζ1311138137ζ1311138137ζ13913313ζ136135132ζ13121310134    complex lifted from C13⋊C3
ρ15333300000000ζ13913313ζ1311138137ζ136135132ζ13121310134ζ13913313ζ136135132ζ1311138137ζ13121310134ζ13121310134ζ1311138137ζ13913313ζ136135132ζ136135132ζ13121310134ζ1311138137ζ13913313    complex lifted from C13⋊C3
ρ16333300000000ζ136135132ζ13913313ζ13121310134ζ1311138137ζ136135132ζ13121310134ζ13913313ζ1311138137ζ1311138137ζ13913313ζ136135132ζ13121310134ζ13121310134ζ1311138137ζ13913313ζ136135132    complex lifted from C13⋊C3
ρ1733-3+3-3/2-3-3-3/200000000ζ136135132ζ13913313ζ13121310134ζ1311138137ζ136135132ζ13121310134ζ13913313ζ1311138137ζ32ζ131132ζ13832ζ137ζ32ζ13932ζ13332ζ13ζ32ζ13632ζ13532ζ132ζ32ζ131232ζ131032ζ134ζ3ζ13123ζ13103ζ134ζ3ζ13113ζ1383ζ137ζ3ζ1393ζ1333ζ13ζ3ζ1363ζ1353ζ132    complex lifted from C3×C13⋊C3
ρ1833-3+3-3/2-3-3-3/200000000ζ13913313ζ1311138137ζ136135132ζ13121310134ζ13913313ζ136135132ζ1311138137ζ13121310134ζ32ζ131232ζ131032ζ134ζ32ζ131132ζ13832ζ137ζ32ζ13932ζ13332ζ13ζ32ζ13632ζ13532ζ132ζ3ζ1363ζ1353ζ132ζ3ζ13123ζ13103ζ134ζ3ζ13113ζ1383ζ137ζ3ζ1393ζ1333ζ13    complex lifted from C3×C13⋊C3
ρ1933-3-3-3/2-3+3-3/200000000ζ13913313ζ1311138137ζ136135132ζ13121310134ζ13913313ζ136135132ζ1311138137ζ13121310134ζ3ζ13123ζ13103ζ134ζ3ζ13113ζ1383ζ137ζ3ζ1393ζ1333ζ13ζ3ζ1363ζ1353ζ132ζ32ζ13632ζ13532ζ132ζ32ζ131232ζ131032ζ134ζ32ζ131132ζ13832ζ137ζ32ζ13932ζ13332ζ13    complex lifted from C3×C13⋊C3
ρ2033-3-3-3/2-3+3-3/200000000ζ1311138137ζ13121310134ζ13913313ζ136135132ζ1311138137ζ13913313ζ13121310134ζ136135132ζ3ζ1363ζ1353ζ132ζ3ζ13123ζ13103ζ134ζ3ζ13113ζ1383ζ137ζ3ζ1393ζ1333ζ13ζ32ζ13932ζ13332ζ13ζ32ζ13632ζ13532ζ132ζ32ζ131232ζ131032ζ134ζ32ζ131132ζ13832ζ137    complex lifted from C3×C13⋊C3
ρ2133-3+3-3/2-3-3-3/200000000ζ13121310134ζ136135132ζ1311138137ζ13913313ζ13121310134ζ1311138137ζ136135132ζ13913313ζ32ζ13932ζ13332ζ13ζ32ζ13632ζ13532ζ132ζ32ζ131232ζ131032ζ134ζ32ζ131132ζ13832ζ137ζ3ζ13113ζ1383ζ137ζ3ζ1393ζ1333ζ13ζ3ζ1363ζ1353ζ132ζ3ζ13123ζ13103ζ134    complex lifted from C3×C13⋊C3
ρ2233-3-3-3/2-3+3-3/200000000ζ136135132ζ13913313ζ13121310134ζ1311138137ζ136135132ζ13121310134ζ13913313ζ1311138137ζ3ζ13113ζ1383ζ137ζ3ζ1393ζ1333ζ13ζ3ζ1363ζ1353ζ132ζ3ζ13123ζ13103ζ134ζ32ζ131232ζ131032ζ134ζ32ζ131132ζ13832ζ137ζ32ζ13932ζ13332ζ13ζ32ζ13632ζ13532ζ132    complex lifted from C3×C13⋊C3
ρ2333-3+3-3/2-3-3-3/200000000ζ1311138137ζ13121310134ζ13913313ζ136135132ζ1311138137ζ13913313ζ13121310134ζ136135132ζ32ζ13632ζ13532ζ132ζ32ζ131232ζ131032ζ134ζ32ζ131132ζ13832ζ137ζ32ζ13932ζ13332ζ13ζ3ζ1393ζ1333ζ13ζ3ζ1363ζ1353ζ132ζ3ζ13123ζ13103ζ134ζ3ζ13113ζ1383ζ137    complex lifted from C3×C13⋊C3
ρ2433-3-3-3/2-3+3-3/200000000ζ13121310134ζ136135132ζ1311138137ζ13913313ζ13121310134ζ1311138137ζ136135132ζ13913313ζ3ζ1393ζ1333ζ13ζ3ζ1363ζ1353ζ132ζ3ζ13123ζ13103ζ134ζ3ζ13113ζ1383ζ137ζ32ζ131132ζ13832ζ137ζ32ζ13932ζ13332ζ13ζ32ζ13632ζ13532ζ132ζ32ζ131232ζ131032ζ134    complex lifted from C3×C13⋊C3
ρ259-30000000000139+3ζ133+3ζ131311+3ζ138+3ζ137136+3ζ135+3ζ1321312+3ζ1310+3ζ1341391331313613513213111381371312131013400000000    complex faithful
ρ269-300000000001311+3ζ138+3ζ1371312+3ζ1310+3ζ134139+3ζ133+3ζ13136+3ζ135+3ζ1321311138137139133131312131013413613513200000000    complex faithful
ρ279-300000000001312+3ζ1310+3ζ134136+3ζ135+3ζ1321311+3ζ138+3ζ137139+3ζ133+3ζ131312131013413111381371361351321391331300000000    complex faithful
ρ289-30000000000136+3ζ135+3ζ132139+3ζ133+3ζ131312+3ζ1310+3ζ1341311+3ζ138+3ζ1371361351321312131013413913313131113813700000000    complex faithful

Smallest permutation representation of A4×C13⋊C3
On 52 points
Generators in S52
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 51)(39 52)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)
(14 27 40)(15 28 41)(16 29 42)(17 30 43)(18 31 44)(19 32 45)(20 33 46)(21 34 47)(22 35 48)(23 36 49)(24 37 50)(25 38 51)(26 39 52)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(15 17 23)(16 20 19)(18 26 24)(21 22 25)(28 30 36)(29 33 32)(31 39 37)(34 35 38)(41 43 49)(42 46 45)(44 52 50)(47 48 51)

G:=sub<Sym(52)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52), (14,27,40)(15,28,41)(16,29,42)(17,30,43)(18,31,44)(19,32,45)(20,33,46)(21,34,47)(22,35,48)(23,36,49)(24,37,50)(25,38,51)(26,39,52), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)>;

G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52), (14,27,40)(15,28,41)(16,29,42)(17,30,43)(18,31,44)(19,32,45)(20,33,46)(21,34,47)(22,35,48)(23,36,49)(24,37,50)(25,38,51)(26,39,52), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51) );

G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,51),(39,52)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52)], [(14,27,40),(15,28,41),(16,29,42),(17,30,43),(18,31,44),(19,32,45),(20,33,46),(21,34,47),(22,35,48),(23,36,49),(24,37,50),(25,38,51),(26,39,52)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(15,17,23),(16,20,19),(18,26,24),(21,22,25),(28,30,36),(29,33,32),(31,39,37),(34,35,38),(41,43,49),(42,46,45),(44,52,50),(47,48,51)]])

Matrix representation of A4×C13⋊C3 in GL6(𝔽79)

100000
010000
001000
0001420
0000780
000307778
,
100000
010000
001000
0001042
000307877
0000078
,
2300000
0230000
0023000
000100
000307878
000010
,
50661000
100000
010000
000100
000010
000001
,
2300000
392117000
514035000
000100
000010
000001

G:=sub<GL(6,GF(79))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,30,0,0,0,42,78,77,0,0,0,0,0,78],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,30,0,0,0,0,0,78,0,0,0,0,42,77,78],[23,0,0,0,0,0,0,23,0,0,0,0,0,0,23,0,0,0,0,0,0,1,30,0,0,0,0,0,78,1,0,0,0,0,78,0],[50,1,0,0,0,0,66,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[23,39,51,0,0,0,0,21,40,0,0,0,0,17,35,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

A4×C13⋊C3 in GAP, Magma, Sage, TeX

A_4\times C_{13}\rtimes C_3
% in TeX

G:=Group("A4xC13:C3");
// GroupNames label

G:=SmallGroup(468,32);
// by ID

G=gap.SmallGroup(468,32);
# by ID

G:=PCGroup([5,-3,-3,-2,2,-13,142,68,2704]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^13=e^3=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^9>;
// generators/relations

Export

Subgroup lattice of A4×C13⋊C3 in TeX
Character table of A4×C13⋊C3 in TeX

׿
×
𝔽