direct product, metabelian, soluble, monomial, A-group
Aliases: A4×C13⋊C3, C13⋊A4⋊C3, (A4×C13)⋊C3, C13⋊1(C3×A4), (C2×C26)⋊C32, (C22×C13⋊C3)⋊C3, C22⋊1(C3×C13⋊C3), SmallGroup(468,32)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — C2×C26 — C22×C13⋊C3 — A4×C13⋊C3 |
C2×C26 — A4×C13⋊C3 |
Generators and relations for A4×C13⋊C3
G = < a,b,c,d,e | a2=b2=c3=d13=e3=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d9 >
Character table of A4×C13⋊C3
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 6A | 6B | 13A | 13B | 13C | 13D | 26A | 26B | 26C | 26D | 39A | 39B | 39C | 39D | 39E | 39F | 39G | 39H | |
size | 1 | 3 | 4 | 4 | 13 | 13 | 52 | 52 | 52 | 52 | 39 | 39 | 3 | 3 | 3 | 3 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ5 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ7 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ8 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ9 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ10 | 3 | -1 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | -1 | -1 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ11 | 3 | -1 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×A4 |
ρ12 | 3 | -1 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×A4 |
ρ13 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | complex lifted from C13⋊C3 |
ρ14 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | complex lifted from C13⋊C3 |
ρ15 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | complex lifted from C13⋊C3 |
ρ16 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | complex lifted from C13⋊C3 |
ρ17 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | complex lifted from C3×C13⋊C3 |
ρ18 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | complex lifted from C3×C13⋊C3 |
ρ19 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | complex lifted from C3×C13⋊C3 |
ρ20 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | complex lifted from C3×C13⋊C3 |
ρ21 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | complex lifted from C3×C13⋊C3 |
ρ22 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | complex lifted from C3×C13⋊C3 |
ρ23 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | complex lifted from C3×C13⋊C3 |
ρ24 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ3ζ139+ζ3ζ133+ζ3ζ13 | ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ3ζ1312+ζ3ζ1310+ζ3ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137 | ζ32ζ1311+ζ32ζ138+ζ32ζ137 | ζ32ζ139+ζ32ζ133+ζ32ζ13 | ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ32ζ1312+ζ32ζ1310+ζ32ζ134 | complex lifted from C3×C13⋊C3 |
ρ25 | 9 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ139+3ζ133+3ζ13 | 3ζ1311+3ζ138+3ζ137 | 3ζ136+3ζ135+3ζ132 | 3ζ1312+3ζ1310+3ζ134 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1311-ζ138-ζ137 | -ζ1312-ζ1310-ζ134 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 9 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ1311+3ζ138+3ζ137 | 3ζ1312+3ζ1310+3ζ134 | 3ζ139+3ζ133+3ζ13 | 3ζ136+3ζ135+3ζ132 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ1312-ζ1310-ζ134 | -ζ136-ζ135-ζ132 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 9 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ1312+3ζ1310+3ζ134 | 3ζ136+3ζ135+3ζ132 | 3ζ1311+3ζ138+3ζ137 | 3ζ139+3ζ133+3ζ13 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ136-ζ135-ζ132 | -ζ139-ζ133-ζ13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 9 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ136+3ζ135+3ζ132 | 3ζ139+3ζ133+3ζ13 | 3ζ1312+3ζ1310+3ζ134 | 3ζ1311+3ζ138+3ζ137 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ139-ζ133-ζ13 | -ζ1311-ζ138-ζ137 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 51)(39 52)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)
(14 27 40)(15 28 41)(16 29 42)(17 30 43)(18 31 44)(19 32 45)(20 33 46)(21 34 47)(22 35 48)(23 36 49)(24 37 50)(25 38 51)(26 39 52)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(15 17 23)(16 20 19)(18 26 24)(21 22 25)(28 30 36)(29 33 32)(31 39 37)(34 35 38)(41 43 49)(42 46 45)(44 52 50)(47 48 51)
G:=sub<Sym(52)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52), (14,27,40)(15,28,41)(16,29,42)(17,30,43)(18,31,44)(19,32,45)(20,33,46)(21,34,47)(22,35,48)(23,36,49)(24,37,50)(25,38,51)(26,39,52), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)>;
G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52), (14,27,40)(15,28,41)(16,29,42)(17,30,43)(18,31,44)(19,32,45)(20,33,46)(21,34,47)(22,35,48)(23,36,49)(24,37,50)(25,38,51)(26,39,52), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51) );
G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,51),(39,52)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52)], [(14,27,40),(15,28,41),(16,29,42),(17,30,43),(18,31,44),(19,32,45),(20,33,46),(21,34,47),(22,35,48),(23,36,49),(24,37,50),(25,38,51),(26,39,52)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(15,17,23),(16,20,19),(18,26,24),(21,22,25),(28,30,36),(29,33,32),(31,39,37),(34,35,38),(41,43,49),(42,46,45),(44,52,50),(47,48,51)]])
Matrix representation of A4×C13⋊C3 ►in GL6(𝔽79)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 42 | 0 |
0 | 0 | 0 | 0 | 78 | 0 |
0 | 0 | 0 | 30 | 77 | 78 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 42 |
0 | 0 | 0 | 30 | 78 | 77 |
0 | 0 | 0 | 0 | 0 | 78 |
23 | 0 | 0 | 0 | 0 | 0 |
0 | 23 | 0 | 0 | 0 | 0 |
0 | 0 | 23 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 30 | 78 | 78 |
0 | 0 | 0 | 0 | 1 | 0 |
50 | 66 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
23 | 0 | 0 | 0 | 0 | 0 |
39 | 21 | 17 | 0 | 0 | 0 |
51 | 40 | 35 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(79))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,30,0,0,0,42,78,77,0,0,0,0,0,78],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,30,0,0,0,0,0,78,0,0,0,0,42,77,78],[23,0,0,0,0,0,0,23,0,0,0,0,0,0,23,0,0,0,0,0,0,1,30,0,0,0,0,0,78,1,0,0,0,0,78,0],[50,1,0,0,0,0,66,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[23,39,51,0,0,0,0,21,40,0,0,0,0,17,35,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
A4×C13⋊C3 in GAP, Magma, Sage, TeX
A_4\times C_{13}\rtimes C_3
% in TeX
G:=Group("A4xC13:C3");
// GroupNames label
G:=SmallGroup(468,32);
// by ID
G=gap.SmallGroup(468,32);
# by ID
G:=PCGroup([5,-3,-3,-2,2,-13,142,68,2704]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^13=e^3=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^9>;
// generators/relations
Export
Subgroup lattice of A4×C13⋊C3 in TeX
Character table of A4×C13⋊C3 in TeX