Copied to
clipboard

G = C17⋊Dic7order 476 = 22·7·17

The semidirect product of C17 and Dic7 acting via Dic7/C7=C4

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C17⋊Dic7, C1191C4, D17.D7, C7⋊(C17⋊C4), (C7×D17).1C2, SmallGroup(476,6)

Series: Derived Chief Lower central Upper central

C1C119 — C17⋊Dic7
C1C17C119C7×D17 — C17⋊Dic7
C119 — C17⋊Dic7
C1

Generators and relations for C17⋊Dic7
 G = < a,b,c | a17=b14=1, c2=b7, bab-1=a-1, cac-1=a13, cbc-1=b-1 >

17C2
119C4
17C14
17Dic7
7C17⋊C4

Smallest permutation representation of C17⋊Dic7
On 119 points
Generators in S119
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119)
(1 107 97 82 57 48 25)(2 106 98 81 58 47 26 17 108 96 83 56 49 24)(3 105 99 80 59 46 27 16 109 95 84 55 50 23)(4 104 100 79 60 45 28 15 110 94 85 54 51 22)(5 103 101 78 61 44 29 14 111 93 69 53 35 21)(6 119 102 77 62 43 30 13 112 92 70 52 36 20)(7 118 86 76 63 42 31 12 113 91 71 68 37 19)(8 117 87 75 64 41 32 11 114 90 72 67 38 18)(9 116 88 74 65 40 33 10 115 89 73 66 39 34)
(2 5 17 14)(3 9 16 10)(4 13 15 6)(7 8 12 11)(18 113 32 118)(19 117 31 114)(20 104 30 110)(21 108 29 106)(22 112 28 119)(23 116 27 115)(24 103 26 111)(25 107)(33 105 34 109)(35 96 44 98)(36 100 43 94)(37 87 42 90)(38 91 41 86)(39 95 40 99)(45 102 51 92)(46 89 50 88)(47 93 49 101)(48 97)(52 79 62 85)(53 83 61 81)(54 70 60 77)(55 74 59 73)(56 78 58 69)(57 82)(63 72 68 75)(64 76 67 71)(65 80 66 84)

G:=sub<Sym(119)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119), (1,107,97,82,57,48,25)(2,106,98,81,58,47,26,17,108,96,83,56,49,24)(3,105,99,80,59,46,27,16,109,95,84,55,50,23)(4,104,100,79,60,45,28,15,110,94,85,54,51,22)(5,103,101,78,61,44,29,14,111,93,69,53,35,21)(6,119,102,77,62,43,30,13,112,92,70,52,36,20)(7,118,86,76,63,42,31,12,113,91,71,68,37,19)(8,117,87,75,64,41,32,11,114,90,72,67,38,18)(9,116,88,74,65,40,33,10,115,89,73,66,39,34), (2,5,17,14)(3,9,16,10)(4,13,15,6)(7,8,12,11)(18,113,32,118)(19,117,31,114)(20,104,30,110)(21,108,29,106)(22,112,28,119)(23,116,27,115)(24,103,26,111)(25,107)(33,105,34,109)(35,96,44,98)(36,100,43,94)(37,87,42,90)(38,91,41,86)(39,95,40,99)(45,102,51,92)(46,89,50,88)(47,93,49,101)(48,97)(52,79,62,85)(53,83,61,81)(54,70,60,77)(55,74,59,73)(56,78,58,69)(57,82)(63,72,68,75)(64,76,67,71)(65,80,66,84)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119), (1,107,97,82,57,48,25)(2,106,98,81,58,47,26,17,108,96,83,56,49,24)(3,105,99,80,59,46,27,16,109,95,84,55,50,23)(4,104,100,79,60,45,28,15,110,94,85,54,51,22)(5,103,101,78,61,44,29,14,111,93,69,53,35,21)(6,119,102,77,62,43,30,13,112,92,70,52,36,20)(7,118,86,76,63,42,31,12,113,91,71,68,37,19)(8,117,87,75,64,41,32,11,114,90,72,67,38,18)(9,116,88,74,65,40,33,10,115,89,73,66,39,34), (2,5,17,14)(3,9,16,10)(4,13,15,6)(7,8,12,11)(18,113,32,118)(19,117,31,114)(20,104,30,110)(21,108,29,106)(22,112,28,119)(23,116,27,115)(24,103,26,111)(25,107)(33,105,34,109)(35,96,44,98)(36,100,43,94)(37,87,42,90)(38,91,41,86)(39,95,40,99)(45,102,51,92)(46,89,50,88)(47,93,49,101)(48,97)(52,79,62,85)(53,83,61,81)(54,70,60,77)(55,74,59,73)(56,78,58,69)(57,82)(63,72,68,75)(64,76,67,71)(65,80,66,84) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)], [(1,107,97,82,57,48,25),(2,106,98,81,58,47,26,17,108,96,83,56,49,24),(3,105,99,80,59,46,27,16,109,95,84,55,50,23),(4,104,100,79,60,45,28,15,110,94,85,54,51,22),(5,103,101,78,61,44,29,14,111,93,69,53,35,21),(6,119,102,77,62,43,30,13,112,92,70,52,36,20),(7,118,86,76,63,42,31,12,113,91,71,68,37,19),(8,117,87,75,64,41,32,11,114,90,72,67,38,18),(9,116,88,74,65,40,33,10,115,89,73,66,39,34)], [(2,5,17,14),(3,9,16,10),(4,13,15,6),(7,8,12,11),(18,113,32,118),(19,117,31,114),(20,104,30,110),(21,108,29,106),(22,112,28,119),(23,116,27,115),(24,103,26,111),(25,107),(33,105,34,109),(35,96,44,98),(36,100,43,94),(37,87,42,90),(38,91,41,86),(39,95,40,99),(45,102,51,92),(46,89,50,88),(47,93,49,101),(48,97),(52,79,62,85),(53,83,61,81),(54,70,60,77),(55,74,59,73),(56,78,58,69),(57,82),(63,72,68,75),(64,76,67,71),(65,80,66,84)]])

38 conjugacy classes

class 1  2 4A4B7A7B7C14A14B14C17A17B17C17D119A···119X
order124477714141417171717119···119
size11711911922234343444444···4

38 irreducible representations

dim1112244
type+++-+
imageC1C2C4D7Dic7C17⋊C4C17⋊Dic7
kernelC17⋊Dic7C7×D17C119D17C17C7C1
# reps11233424

Matrix representation of C17⋊Dic7 in GL6(𝔽953)

100000
010000
00727100
00368010
00728001
00703826827829
,
09520000
14990000
00251478268351
00850481756226
0026128157870
0048162429596
,
44200000
5385110000
00936294169190
00671748730553
00394578929198
00497494719246

G:=sub<GL(6,GF(953))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,727,368,728,703,0,0,1,0,0,826,0,0,0,1,0,827,0,0,0,0,1,829],[0,1,0,0,0,0,952,499,0,0,0,0,0,0,251,850,261,481,0,0,478,481,281,624,0,0,268,756,578,29,0,0,351,226,70,596],[442,538,0,0,0,0,0,511,0,0,0,0,0,0,936,671,394,497,0,0,294,748,578,494,0,0,169,730,929,719,0,0,190,553,198,246] >;

C17⋊Dic7 in GAP, Magma, Sage, TeX

C_{17}\rtimes {\rm Dic}_7
% in TeX

G:=Group("C17:Dic7");
// GroupNames label

G:=SmallGroup(476,6);
// by ID

G=gap.SmallGroup(476,6);
# by ID

G:=PCGroup([4,-2,-2,-7,-17,8,290,1795,3591]);
// Polycyclic

G:=Group<a,b,c|a^17=b^14=1,c^2=b^7,b*a*b^-1=a^-1,c*a*c^-1=a^13,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C17⋊Dic7 in TeX

׿
×
𝔽