Copied to
clipboard

G = D230order 460 = 22·5·23

Dihedral group

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D230, C2×D115, C46⋊D5, C10⋊D23, C52D46, C232D10, C2301C2, C1152C22, sometimes denoted D460 or Dih230 or Dih460, SmallGroup(460,10)

Series: Derived Chief Lower central Upper central

C1C115 — D230
C1C23C115D115 — D230
C115 — D230
C1C2

Generators and relations for D230
 G = < a,b | a230=b2=1, bab=a-1 >

115C2
115C2
115C22
23D5
23D5
5D23
5D23
23D10
5D46

Smallest permutation representation of D230
On 230 points
Generators in S230
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230)
(1 230)(2 229)(3 228)(4 227)(5 226)(6 225)(7 224)(8 223)(9 222)(10 221)(11 220)(12 219)(13 218)(14 217)(15 216)(16 215)(17 214)(18 213)(19 212)(20 211)(21 210)(22 209)(23 208)(24 207)(25 206)(26 205)(27 204)(28 203)(29 202)(30 201)(31 200)(32 199)(33 198)(34 197)(35 196)(36 195)(37 194)(38 193)(39 192)(40 191)(41 190)(42 189)(43 188)(44 187)(45 186)(46 185)(47 184)(48 183)(49 182)(50 181)(51 180)(52 179)(53 178)(54 177)(55 176)(56 175)(57 174)(58 173)(59 172)(60 171)(61 170)(62 169)(63 168)(64 167)(65 166)(66 165)(67 164)(68 163)(69 162)(70 161)(71 160)(72 159)(73 158)(74 157)(75 156)(76 155)(77 154)(78 153)(79 152)(80 151)(81 150)(82 149)(83 148)(84 147)(85 146)(86 145)(87 144)(88 143)(89 142)(90 141)(91 140)(92 139)(93 138)(94 137)(95 136)(96 135)(97 134)(98 133)(99 132)(100 131)(101 130)(102 129)(103 128)(104 127)(105 126)(106 125)(107 124)(108 123)(109 122)(110 121)(111 120)(112 119)(113 118)(114 117)(115 116)

G:=sub<Sym(230)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230), (1,230)(2,229)(3,228)(4,227)(5,226)(6,225)(7,224)(8,223)(9,222)(10,221)(11,220)(12,219)(13,218)(14,217)(15,216)(16,215)(17,214)(18,213)(19,212)(20,211)(21,210)(22,209)(23,208)(24,207)(25,206)(26,205)(27,204)(28,203)(29,202)(30,201)(31,200)(32,199)(33,198)(34,197)(35,196)(36,195)(37,194)(38,193)(39,192)(40,191)(41,190)(42,189)(43,188)(44,187)(45,186)(46,185)(47,184)(48,183)(49,182)(50,181)(51,180)(52,179)(53,178)(54,177)(55,176)(56,175)(57,174)(58,173)(59,172)(60,171)(61,170)(62,169)(63,168)(64,167)(65,166)(66,165)(67,164)(68,163)(69,162)(70,161)(71,160)(72,159)(73,158)(74,157)(75,156)(76,155)(77,154)(78,153)(79,152)(80,151)(81,150)(82,149)(83,148)(84,147)(85,146)(86,145)(87,144)(88,143)(89,142)(90,141)(91,140)(92,139)(93,138)(94,137)(95,136)(96,135)(97,134)(98,133)(99,132)(100,131)(101,130)(102,129)(103,128)(104,127)(105,126)(106,125)(107,124)(108,123)(109,122)(110,121)(111,120)(112,119)(113,118)(114,117)(115,116)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230), (1,230)(2,229)(3,228)(4,227)(5,226)(6,225)(7,224)(8,223)(9,222)(10,221)(11,220)(12,219)(13,218)(14,217)(15,216)(16,215)(17,214)(18,213)(19,212)(20,211)(21,210)(22,209)(23,208)(24,207)(25,206)(26,205)(27,204)(28,203)(29,202)(30,201)(31,200)(32,199)(33,198)(34,197)(35,196)(36,195)(37,194)(38,193)(39,192)(40,191)(41,190)(42,189)(43,188)(44,187)(45,186)(46,185)(47,184)(48,183)(49,182)(50,181)(51,180)(52,179)(53,178)(54,177)(55,176)(56,175)(57,174)(58,173)(59,172)(60,171)(61,170)(62,169)(63,168)(64,167)(65,166)(66,165)(67,164)(68,163)(69,162)(70,161)(71,160)(72,159)(73,158)(74,157)(75,156)(76,155)(77,154)(78,153)(79,152)(80,151)(81,150)(82,149)(83,148)(84,147)(85,146)(86,145)(87,144)(88,143)(89,142)(90,141)(91,140)(92,139)(93,138)(94,137)(95,136)(96,135)(97,134)(98,133)(99,132)(100,131)(101,130)(102,129)(103,128)(104,127)(105,126)(106,125)(107,124)(108,123)(109,122)(110,121)(111,120)(112,119)(113,118)(114,117)(115,116) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230)], [(1,230),(2,229),(3,228),(4,227),(5,226),(6,225),(7,224),(8,223),(9,222),(10,221),(11,220),(12,219),(13,218),(14,217),(15,216),(16,215),(17,214),(18,213),(19,212),(20,211),(21,210),(22,209),(23,208),(24,207),(25,206),(26,205),(27,204),(28,203),(29,202),(30,201),(31,200),(32,199),(33,198),(34,197),(35,196),(36,195),(37,194),(38,193),(39,192),(40,191),(41,190),(42,189),(43,188),(44,187),(45,186),(46,185),(47,184),(48,183),(49,182),(50,181),(51,180),(52,179),(53,178),(54,177),(55,176),(56,175),(57,174),(58,173),(59,172),(60,171),(61,170),(62,169),(63,168),(64,167),(65,166),(66,165),(67,164),(68,163),(69,162),(70,161),(71,160),(72,159),(73,158),(74,157),(75,156),(76,155),(77,154),(78,153),(79,152),(80,151),(81,150),(82,149),(83,148),(84,147),(85,146),(86,145),(87,144),(88,143),(89,142),(90,141),(91,140),(92,139),(93,138),(94,137),(95,136),(96,135),(97,134),(98,133),(99,132),(100,131),(101,130),(102,129),(103,128),(104,127),(105,126),(106,125),(107,124),(108,123),(109,122),(110,121),(111,120),(112,119),(113,118),(114,117),(115,116)]])

118 conjugacy classes

class 1 2A2B2C5A5B10A10B23A···23K46A···46K115A···115AR230A···230AR
order122255101023···2346···46115···115230···230
size1111511522222···22···22···22···2

118 irreducible representations

dim111222222
type+++++++++
imageC1C2C2D5D10D23D46D115D230
kernelD230D115C230C46C23C10C5C2C1
# reps1212211114444

Matrix representation of D230 in GL2(𝔽461) generated by

57386
7555
,
57386
240404
G:=sub<GL(2,GF(461))| [57,75,386,55],[57,240,386,404] >;

D230 in GAP, Magma, Sage, TeX

D_{230}
% in TeX

G:=Group("D230");
// GroupNames label

G:=SmallGroup(460,10);
// by ID

G=gap.SmallGroup(460,10);
# by ID

G:=PCGroup([4,-2,-2,-5,-23,194,7043]);
// Polycyclic

G:=Group<a,b|a^230=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D230 in TeX

׿
×
𝔽