Copied to
clipboard

G = D5×D23order 460 = 22·5·23

Direct product of D5 and D23

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D5×D23, C51D46, D115⋊C2, C231D10, C115⋊C22, (C5×D23)⋊C2, (D5×C23)⋊C2, SmallGroup(460,7)

Series: Derived Chief Lower central Upper central

C1C115 — D5×D23
C1C23C115C5×D23 — D5×D23
C115 — D5×D23
C1

Generators and relations for D5×D23
 G = < a,b,c,d | a5=b2=c23=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

5C2
23C2
115C2
115C22
23C10
23D5
5C46
5D23
23D10
5D46

Smallest permutation representation of D5×D23
On 115 points
Generators in S115
(1 109 82 52 40)(2 110 83 53 41)(3 111 84 54 42)(4 112 85 55 43)(5 113 86 56 44)(6 114 87 57 45)(7 115 88 58 46)(8 93 89 59 24)(9 94 90 60 25)(10 95 91 61 26)(11 96 92 62 27)(12 97 70 63 28)(13 98 71 64 29)(14 99 72 65 30)(15 100 73 66 31)(16 101 74 67 32)(17 102 75 68 33)(18 103 76 69 34)(19 104 77 47 35)(20 105 78 48 36)(21 106 79 49 37)(22 107 80 50 38)(23 108 81 51 39)
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 24)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)(21 37)(22 38)(23 39)(47 104)(48 105)(49 106)(50 107)(51 108)(52 109)(53 110)(54 111)(55 112)(56 113)(57 114)(58 115)(59 93)(60 94)(61 95)(62 96)(63 97)(64 98)(65 99)(66 100)(67 101)(68 102)(69 103)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)(24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69)(70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)(93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 16)(9 15)(10 14)(11 13)(24 32)(25 31)(26 30)(27 29)(33 46)(34 45)(35 44)(36 43)(37 42)(38 41)(39 40)(47 56)(48 55)(49 54)(50 53)(51 52)(57 69)(58 68)(59 67)(60 66)(61 65)(62 64)(71 92)(72 91)(73 90)(74 89)(75 88)(76 87)(77 86)(78 85)(79 84)(80 83)(81 82)(93 101)(94 100)(95 99)(96 98)(102 115)(103 114)(104 113)(105 112)(106 111)(107 110)(108 109)

G:=sub<Sym(115)| (1,109,82,52,40)(2,110,83,53,41)(3,111,84,54,42)(4,112,85,55,43)(5,113,86,56,44)(6,114,87,57,45)(7,115,88,58,46)(8,93,89,59,24)(9,94,90,60,25)(10,95,91,61,26)(11,96,92,62,27)(12,97,70,63,28)(13,98,71,64,29)(14,99,72,65,30)(15,100,73,66,31)(16,101,74,67,32)(17,102,75,68,33)(18,103,76,69,34)(19,104,77,47,35)(20,105,78,48,36)(21,106,79,49,37)(22,107,80,50,38)(23,108,81,51,39), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(47,104)(48,105)(49,106)(50,107)(51,108)(52,109)(53,110)(54,111)(55,112)(56,113)(57,114)(58,115)(59,93)(60,94)(61,95)(62,96)(63,97)(64,98)(65,99)(66,100)(67,101)(68,102)(69,103), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)(24,32)(25,31)(26,30)(27,29)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,40)(47,56)(48,55)(49,54)(50,53)(51,52)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(71,92)(72,91)(73,90)(74,89)(75,88)(76,87)(77,86)(78,85)(79,84)(80,83)(81,82)(93,101)(94,100)(95,99)(96,98)(102,115)(103,114)(104,113)(105,112)(106,111)(107,110)(108,109)>;

G:=Group( (1,109,82,52,40)(2,110,83,53,41)(3,111,84,54,42)(4,112,85,55,43)(5,113,86,56,44)(6,114,87,57,45)(7,115,88,58,46)(8,93,89,59,24)(9,94,90,60,25)(10,95,91,61,26)(11,96,92,62,27)(12,97,70,63,28)(13,98,71,64,29)(14,99,72,65,30)(15,100,73,66,31)(16,101,74,67,32)(17,102,75,68,33)(18,103,76,69,34)(19,104,77,47,35)(20,105,78,48,36)(21,106,79,49,37)(22,107,80,50,38)(23,108,81,51,39), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(47,104)(48,105)(49,106)(50,107)(51,108)(52,109)(53,110)(54,111)(55,112)(56,113)(57,114)(58,115)(59,93)(60,94)(61,95)(62,96)(63,97)(64,98)(65,99)(66,100)(67,101)(68,102)(69,103), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)(24,32)(25,31)(26,30)(27,29)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,40)(47,56)(48,55)(49,54)(50,53)(51,52)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(71,92)(72,91)(73,90)(74,89)(75,88)(76,87)(77,86)(78,85)(79,84)(80,83)(81,82)(93,101)(94,100)(95,99)(96,98)(102,115)(103,114)(104,113)(105,112)(106,111)(107,110)(108,109) );

G=PermutationGroup([[(1,109,82,52,40),(2,110,83,53,41),(3,111,84,54,42),(4,112,85,55,43),(5,113,86,56,44),(6,114,87,57,45),(7,115,88,58,46),(8,93,89,59,24),(9,94,90,60,25),(10,95,91,61,26),(11,96,92,62,27),(12,97,70,63,28),(13,98,71,64,29),(14,99,72,65,30),(15,100,73,66,31),(16,101,74,67,32),(17,102,75,68,33),(18,103,76,69,34),(19,104,77,47,35),(20,105,78,48,36),(21,106,79,49,37),(22,107,80,50,38),(23,108,81,51,39)], [(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,24),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36),(21,37),(22,38),(23,39),(47,104),(48,105),(49,106),(50,107),(51,108),(52,109),(53,110),(54,111),(55,112),(56,113),(57,114),(58,115),(59,93),(60,94),(61,95),(62,96),(63,97),(64,98),(65,99),(66,100),(67,101),(68,102),(69,103)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23),(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69),(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92),(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,16),(9,15),(10,14),(11,13),(24,32),(25,31),(26,30),(27,29),(33,46),(34,45),(35,44),(36,43),(37,42),(38,41),(39,40),(47,56),(48,55),(49,54),(50,53),(51,52),(57,69),(58,68),(59,67),(60,66),(61,65),(62,64),(71,92),(72,91),(73,90),(74,89),(75,88),(76,87),(77,86),(78,85),(79,84),(80,83),(81,82),(93,101),(94,100),(95,99),(96,98),(102,115),(103,114),(104,113),(105,112),(106,111),(107,110),(108,109)]])

52 conjugacy classes

class 1 2A2B2C5A5B10A10B23A···23K46A···46K115A···115V
order122255101023···2346···46115···115
size15231152246462···210···104···4

52 irreducible representations

dim111122224
type+++++++++
imageC1C2C2C2D5D10D23D46D5×D23
kernelD5×D23D5×C23C5×D23D115D23C23D5C5C1
# reps111122111122

Matrix representation of D5×D23 in GL4(𝔽461) generated by

1000
0100
001460
0024438
,
1000
0100
001460
000460
,
304100
23416000
0010
0001
,
2040600
30944100
0010
0001
G:=sub<GL(4,GF(461))| [1,0,0,0,0,1,0,0,0,0,1,24,0,0,460,438],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,460,460],[304,234,0,0,1,160,0,0,0,0,1,0,0,0,0,1],[20,309,0,0,406,441,0,0,0,0,1,0,0,0,0,1] >;

D5×D23 in GAP, Magma, Sage, TeX

D_5\times D_{23}
% in TeX

G:=Group("D5xD23");
// GroupNames label

G:=SmallGroup(460,7);
// by ID

G=gap.SmallGroup(460,7);
# by ID

G:=PCGroup([4,-2,-2,-5,-23,102,7043]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^23=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D5×D23 in TeX

׿
×
𝔽