Extensions 1→N→G→Q→1 with N=C39 and Q=Dic3

Direct product G=N×Q with N=C39 and Q=Dic3
dρLabelID
Dic3×C391562Dic3xC39468,24

Semidirect products G=N:Q with N=C39 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C391Dic3 = C39⋊Dic3φ: Dic3/C3C4 ⊆ Aut C39117C39:1Dic3468,38
C392Dic3 = C3×C39⋊C4φ: Dic3/C3C4 ⊆ Aut C39784C39:2Dic3468,37
C393Dic3 = C3⋊Dic39φ: Dic3/C6C2 ⊆ Aut C39468C39:3Dic3468,27
C394Dic3 = C3×Dic39φ: Dic3/C6C2 ⊆ Aut C391562C39:4Dic3468,25
C395Dic3 = C13×C3⋊Dic3φ: Dic3/C6C2 ⊆ Aut C39468C39:5Dic3468,26

Non-split extensions G=N.Q with N=C39 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C39.Dic3 = C13⋊Dic9φ: Dic3/C3C4 ⊆ Aut C391174C39.Dic3468,10
C39.2Dic3 = Dic117φ: Dic3/C6C2 ⊆ Aut C394682-C39.2Dic3468,5
C39.3Dic3 = C13×Dic9φ: Dic3/C6C2 ⊆ Aut C394682C39.3Dic3468,3

׿
×
𝔽