Copied to
clipboard

G = C13⋊Dic9order 468 = 22·32·13

The semidirect product of C13 and Dic9 acting via Dic9/C9=C4

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C13⋊Dic9, C1171C4, D13.D9, C39.Dic3, C9⋊(C13⋊C4), C3.(C39⋊C4), (C9×D13).1C2, (C3×D13).2S3, SmallGroup(468,10)

Series: Derived Chief Lower central Upper central

C1C117 — C13⋊Dic9
C1C3C39C117C9×D13 — C13⋊Dic9
C117 — C13⋊Dic9
C1

Generators and relations for C13⋊Dic9
 G = < a,b,c | a13=b18=1, c2=b9, bab-1=a-1, cac-1=a8, cbc-1=b-1 >

13C2
117C4
13C6
39Dic3
13C18
9C13⋊C4
13Dic9
3C39⋊C4

Smallest permutation representation of C13⋊Dic9
On 117 points
Generators in S117
(1 67 55 109 15 37 88 97 28 24 100 46 76)(2 77 47 101 25 29 98 89 38 16 110 56 68)(3 69 57 111 17 39 90 99 30 26 102 48 78)(4 79 49 103 27 31 82 91 40 18 112 58 70)(5 71 59 113 19 41 92 83 32 10 104 50 80)(6 81 51 105 11 33 84 93 42 20 114 60 72)(7 73 61 115 21 43 94 85 34 12 106 52 64)(8 65 53 107 13 35 86 95 44 22 116 62 74)(9 75 63 117 23 45 96 87 36 14 108 54 66)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117)
(2 9)(3 8)(4 7)(5 6)(10 84 19 93)(11 83 20 92)(12 82 21 91)(13 99 22 90)(14 98 23 89)(15 97 24 88)(16 96 25 87)(17 95 26 86)(18 94 27 85)(28 67 37 76)(29 66 38 75)(30 65 39 74)(31 64 40 73)(32 81 41 72)(33 80 42 71)(34 79 43 70)(35 78 44 69)(36 77 45 68)(46 109 55 100)(47 108 56 117)(48 107 57 116)(49 106 58 115)(50 105 59 114)(51 104 60 113)(52 103 61 112)(53 102 62 111)(54 101 63 110)

G:=sub<Sym(117)| (1,67,55,109,15,37,88,97,28,24,100,46,76)(2,77,47,101,25,29,98,89,38,16,110,56,68)(3,69,57,111,17,39,90,99,30,26,102,48,78)(4,79,49,103,27,31,82,91,40,18,112,58,70)(5,71,59,113,19,41,92,83,32,10,104,50,80)(6,81,51,105,11,33,84,93,42,20,114,60,72)(7,73,61,115,21,43,94,85,34,12,106,52,64)(8,65,53,107,13,35,86,95,44,22,116,62,74)(9,75,63,117,23,45,96,87,36,14,108,54,66), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117), (2,9)(3,8)(4,7)(5,6)(10,84,19,93)(11,83,20,92)(12,82,21,91)(13,99,22,90)(14,98,23,89)(15,97,24,88)(16,96,25,87)(17,95,26,86)(18,94,27,85)(28,67,37,76)(29,66,38,75)(30,65,39,74)(31,64,40,73)(32,81,41,72)(33,80,42,71)(34,79,43,70)(35,78,44,69)(36,77,45,68)(46,109,55,100)(47,108,56,117)(48,107,57,116)(49,106,58,115)(50,105,59,114)(51,104,60,113)(52,103,61,112)(53,102,62,111)(54,101,63,110)>;

G:=Group( (1,67,55,109,15,37,88,97,28,24,100,46,76)(2,77,47,101,25,29,98,89,38,16,110,56,68)(3,69,57,111,17,39,90,99,30,26,102,48,78)(4,79,49,103,27,31,82,91,40,18,112,58,70)(5,71,59,113,19,41,92,83,32,10,104,50,80)(6,81,51,105,11,33,84,93,42,20,114,60,72)(7,73,61,115,21,43,94,85,34,12,106,52,64)(8,65,53,107,13,35,86,95,44,22,116,62,74)(9,75,63,117,23,45,96,87,36,14,108,54,66), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117), (2,9)(3,8)(4,7)(5,6)(10,84,19,93)(11,83,20,92)(12,82,21,91)(13,99,22,90)(14,98,23,89)(15,97,24,88)(16,96,25,87)(17,95,26,86)(18,94,27,85)(28,67,37,76)(29,66,38,75)(30,65,39,74)(31,64,40,73)(32,81,41,72)(33,80,42,71)(34,79,43,70)(35,78,44,69)(36,77,45,68)(46,109,55,100)(47,108,56,117)(48,107,57,116)(49,106,58,115)(50,105,59,114)(51,104,60,113)(52,103,61,112)(53,102,62,111)(54,101,63,110) );

G=PermutationGroup([[(1,67,55,109,15,37,88,97,28,24,100,46,76),(2,77,47,101,25,29,98,89,38,16,110,56,68),(3,69,57,111,17,39,90,99,30,26,102,48,78),(4,79,49,103,27,31,82,91,40,18,112,58,70),(5,71,59,113,19,41,92,83,32,10,104,50,80),(6,81,51,105,11,33,84,93,42,20,114,60,72),(7,73,61,115,21,43,94,85,34,12,106,52,64),(8,65,53,107,13,35,86,95,44,22,116,62,74),(9,75,63,117,23,45,96,87,36,14,108,54,66)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117)], [(2,9),(3,8),(4,7),(5,6),(10,84,19,93),(11,83,20,92),(12,82,21,91),(13,99,22,90),(14,98,23,89),(15,97,24,88),(16,96,25,87),(17,95,26,86),(18,94,27,85),(28,67,37,76),(29,66,38,75),(30,65,39,74),(31,64,40,73),(32,81,41,72),(33,80,42,71),(34,79,43,70),(35,78,44,69),(36,77,45,68),(46,109,55,100),(47,108,56,117),(48,107,57,116),(49,106,58,115),(50,105,59,114),(51,104,60,113),(52,103,61,112),(53,102,62,111),(54,101,63,110)]])

39 conjugacy classes

class 1  2  3 4A4B 6 9A9B9C13A13B13C18A18B18C39A···39F117A···117R
order12344699913131318181839···39117···117
size1132117117262224442626264···44···4

39 irreducible representations

dim1112222444
type+++-+-+
imageC1C2C4S3Dic3D9Dic9C13⋊C4C39⋊C4C13⋊Dic9
kernelC13⋊Dic9C9×D13C117C3×D13C39D13C13C9C3C1
# reps11211333618

Matrix representation of C13⋊Dic9 in GL4(𝔽937) generated by

92849610
44143201
936000
093600
,
67520355846
73447291146
00262734
00203465
,
01361372
1011576
00684131
00384253
G:=sub<GL(4,GF(937))| [928,441,936,0,496,432,0,936,1,0,0,0,0,1,0,0],[675,734,0,0,203,472,0,0,55,91,262,203,846,146,734,465],[0,1,0,0,1,0,0,0,361,11,684,384,372,576,131,253] >;

C13⋊Dic9 in GAP, Magma, Sage, TeX

C_{13}\rtimes {\rm Dic}_9
% in TeX

G:=Group("C13:Dic9");
// GroupNames label

G:=SmallGroup(468,10);
// by ID

G=gap.SmallGroup(468,10);
# by ID

G:=PCGroup([5,-2,-2,-3,-13,-3,10,2462,1182,1203,1448,7804]);
// Polycyclic

G:=Group<a,b,c|a^13=b^18=1,c^2=b^9,b*a*b^-1=a^-1,c*a*c^-1=a^8,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C13⋊Dic9 in TeX

׿
×
𝔽