Copied to
clipboard

G = C3×C39⋊C4order 468 = 22·32·13

Direct product of C3 and C39⋊C4

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C3×C39⋊C4, C396C12, C392Dic3, (C3×C39)⋊3C4, C322(C13⋊C4), C133(C3×Dic3), (C3×D13).4S3, (C3×D13).5C6, D13.2(C3×S3), (C32×D13).2C2, C3⋊(C3×C13⋊C4), SmallGroup(468,37)

Series: Derived Chief Lower central Upper central

C1C39 — C3×C39⋊C4
C1C13C39C3×D13C32×D13 — C3×C39⋊C4
C39 — C3×C39⋊C4
C1C3

Generators and relations for C3×C39⋊C4
 G = < a,b,c | a3=b39=c4=1, ab=ba, ac=ca, cbc-1=b8 >

13C2
2C3
39C4
13C6
13C6
26C6
2C39
13Dic3
39C12
13C3×C6
3C13⋊C4
2C3×D13
13C3×Dic3
3C3×C13⋊C4

Smallest permutation representation of C3×C39⋊C4
On 78 points
Generators in S78
(1 14 27)(2 15 28)(3 16 29)(4 17 30)(5 18 31)(6 19 32)(7 20 33)(8 21 34)(9 22 35)(10 23 36)(11 24 37)(12 25 38)(13 26 39)(40 66 53)(41 67 54)(42 68 55)(43 69 56)(44 70 57)(45 71 58)(46 72 59)(47 73 60)(48 74 61)(49 75 62)(50 76 63)(51 77 64)(52 78 65)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)
(1 49)(2 54 26 57)(3 59 12 65)(4 64 37 73)(5 69 23 42)(6 74 9 50)(7 40 34 58)(8 45 20 66)(10 55 31 43)(11 60 17 51)(13 70 28 67)(14 75)(15 41 39 44)(16 46 25 52)(18 56 36 68)(19 61 22 76)(21 71 33 53)(24 47 30 77)(27 62)(29 72 38 78)(32 48 35 63)

G:=sub<Sym(78)| (1,14,27)(2,15,28)(3,16,29)(4,17,30)(5,18,31)(6,19,32)(7,20,33)(8,21,34)(9,22,35)(10,23,36)(11,24,37)(12,25,38)(13,26,39)(40,66,53)(41,67,54)(42,68,55)(43,69,56)(44,70,57)(45,71,58)(46,72,59)(47,73,60)(48,74,61)(49,75,62)(50,76,63)(51,77,64)(52,78,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78), (1,49)(2,54,26,57)(3,59,12,65)(4,64,37,73)(5,69,23,42)(6,74,9,50)(7,40,34,58)(8,45,20,66)(10,55,31,43)(11,60,17,51)(13,70,28,67)(14,75)(15,41,39,44)(16,46,25,52)(18,56,36,68)(19,61,22,76)(21,71,33,53)(24,47,30,77)(27,62)(29,72,38,78)(32,48,35,63)>;

G:=Group( (1,14,27)(2,15,28)(3,16,29)(4,17,30)(5,18,31)(6,19,32)(7,20,33)(8,21,34)(9,22,35)(10,23,36)(11,24,37)(12,25,38)(13,26,39)(40,66,53)(41,67,54)(42,68,55)(43,69,56)(44,70,57)(45,71,58)(46,72,59)(47,73,60)(48,74,61)(49,75,62)(50,76,63)(51,77,64)(52,78,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78), (1,49)(2,54,26,57)(3,59,12,65)(4,64,37,73)(5,69,23,42)(6,74,9,50)(7,40,34,58)(8,45,20,66)(10,55,31,43)(11,60,17,51)(13,70,28,67)(14,75)(15,41,39,44)(16,46,25,52)(18,56,36,68)(19,61,22,76)(21,71,33,53)(24,47,30,77)(27,62)(29,72,38,78)(32,48,35,63) );

G=PermutationGroup([[(1,14,27),(2,15,28),(3,16,29),(4,17,30),(5,18,31),(6,19,32),(7,20,33),(8,21,34),(9,22,35),(10,23,36),(11,24,37),(12,25,38),(13,26,39),(40,66,53),(41,67,54),(42,68,55),(43,69,56),(44,70,57),(45,71,58),(46,72,59),(47,73,60),(48,74,61),(49,75,62),(50,76,63),(51,77,64),(52,78,65)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)], [(1,49),(2,54,26,57),(3,59,12,65),(4,64,37,73),(5,69,23,42),(6,74,9,50),(7,40,34,58),(8,45,20,66),(10,55,31,43),(11,60,17,51),(13,70,28,67),(14,75),(15,41,39,44),(16,46,25,52),(18,56,36,68),(19,61,22,76),(21,71,33,53),(24,47,30,77),(27,62),(29,72,38,78),(32,48,35,63)]])

45 conjugacy classes

class 1  2 3A3B3C3D3E4A4B6A6B6C6D6E12A12B12C12D13A13B13C39A···39X
order123333344666661212121213131339···39
size1131122239391313262626393939394444···4

45 irreducible representations

dim11111122224444
type+++-+
imageC1C2C3C4C6C12S3Dic3C3×S3C3×Dic3C13⋊C4C3×C13⋊C4C39⋊C4C3×C39⋊C4
kernelC3×C39⋊C4C32×D13C39⋊C4C3×C39C3×D13C39C3×D13C39D13C13C32C3C3C1
# reps112224112236612

Matrix representation of C3×C39⋊C4 in GL4(𝔽157) generated by

12000
01200
00120
00012
,
1385200
10514300
00145145
001211
,
0010
0001
1000
14215600
G:=sub<GL(4,GF(157))| [12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[138,105,0,0,52,143,0,0,0,0,145,12,0,0,145,11],[0,0,1,142,0,0,0,156,1,0,0,0,0,1,0,0] >;

C3×C39⋊C4 in GAP, Magma, Sage, TeX

C_3\times C_{39}\rtimes C_4
% in TeX

G:=Group("C3xC39:C4");
// GroupNames label

G:=SmallGroup(468,37);
// by ID

G=gap.SmallGroup(468,37);
# by ID

G:=PCGroup([5,-2,-3,-2,-3,-13,30,483,4504,1814]);
// Polycyclic

G:=Group<a,b,c|a^3=b^39=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^8>;
// generators/relations

Export

Subgroup lattice of C3×C39⋊C4 in TeX

׿
×
𝔽