Copied to
clipboard

G = C39⋊Dic3order 468 = 22·32·13

1st semidirect product of C39 and Dic3 acting via Dic3/C3=C4

metabelian, supersoluble, monomial, A-group

Aliases: C391Dic3, (C3×C39)⋊2C4, C3⋊(C39⋊C4), C13⋊(C3⋊Dic3), D13.(C3⋊S3), C323(C13⋊C4), (C3×D13).3S3, (C32×D13).1C2, SmallGroup(468,38)

Series: Derived Chief Lower central Upper central

C1C3×C39 — C39⋊Dic3
C1C13C39C3×C39C32×D13 — C39⋊Dic3
C3×C39 — C39⋊Dic3
C1

Generators and relations for C39⋊Dic3
 G = < a,b,c | a39=b6=1, c2=b3, bab-1=a25, cac-1=a8, cbc-1=b-1 >

13C2
117C4
13C6
13C6
13C6
13C6
39Dic3
39Dic3
39Dic3
39Dic3
13C3×C6
9C13⋊C4
13C3⋊Dic3
3C39⋊C4
3C39⋊C4
3C39⋊C4
3C39⋊C4

Smallest permutation representation of C39⋊Dic3
On 117 points
Generators in S117
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117)
(1 112 73)(2 98 74 26 113 59)(3 84 75 12 114 45)(4 109 76 37 115 70)(5 95 77 23 116 56)(6 81 78 9 117 42)(7 106 40 34 79 67)(8 92 41 20 80 53)(10 103 43 31 82 64)(11 89 44 17 83 50)(13 100 46 28 85 61)(14 86 47)(15 111 48 39 87 72)(16 97 49 25 88 58)(18 108 51 36 90 69)(19 94 52 22 91 55)(21 105 54 33 93 66)(24 102 57 30 96 63)(27 99 60)(29 110 62 38 101 71)(32 107 65 35 104 68)
(2 6 26 9)(3 11 12 17)(4 16 37 25)(5 21 23 33)(7 31 34 10)(8 36 20 18)(13 22 28 19)(14 27)(15 32 39 35)(24 38 30 29)(40 103 67 82)(41 108 53 90)(42 113 78 98)(43 79 64 106)(44 84 50 114)(45 89 75 83)(46 94 61 91)(47 99)(48 104 72 107)(49 109 58 115)(51 80 69 92)(52 85 55 100)(54 95 66 116)(56 105 77 93)(57 110 63 101)(59 81 74 117)(60 86)(62 96 71 102)(65 111 68 87)(70 97 76 88)(73 112)

G:=sub<Sym(117)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117), (1,112,73)(2,98,74,26,113,59)(3,84,75,12,114,45)(4,109,76,37,115,70)(5,95,77,23,116,56)(6,81,78,9,117,42)(7,106,40,34,79,67)(8,92,41,20,80,53)(10,103,43,31,82,64)(11,89,44,17,83,50)(13,100,46,28,85,61)(14,86,47)(15,111,48,39,87,72)(16,97,49,25,88,58)(18,108,51,36,90,69)(19,94,52,22,91,55)(21,105,54,33,93,66)(24,102,57,30,96,63)(27,99,60)(29,110,62,38,101,71)(32,107,65,35,104,68), (2,6,26,9)(3,11,12,17)(4,16,37,25)(5,21,23,33)(7,31,34,10)(8,36,20,18)(13,22,28,19)(14,27)(15,32,39,35)(24,38,30,29)(40,103,67,82)(41,108,53,90)(42,113,78,98)(43,79,64,106)(44,84,50,114)(45,89,75,83)(46,94,61,91)(47,99)(48,104,72,107)(49,109,58,115)(51,80,69,92)(52,85,55,100)(54,95,66,116)(56,105,77,93)(57,110,63,101)(59,81,74,117)(60,86)(62,96,71,102)(65,111,68,87)(70,97,76,88)(73,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117), (1,112,73)(2,98,74,26,113,59)(3,84,75,12,114,45)(4,109,76,37,115,70)(5,95,77,23,116,56)(6,81,78,9,117,42)(7,106,40,34,79,67)(8,92,41,20,80,53)(10,103,43,31,82,64)(11,89,44,17,83,50)(13,100,46,28,85,61)(14,86,47)(15,111,48,39,87,72)(16,97,49,25,88,58)(18,108,51,36,90,69)(19,94,52,22,91,55)(21,105,54,33,93,66)(24,102,57,30,96,63)(27,99,60)(29,110,62,38,101,71)(32,107,65,35,104,68), (2,6,26,9)(3,11,12,17)(4,16,37,25)(5,21,23,33)(7,31,34,10)(8,36,20,18)(13,22,28,19)(14,27)(15,32,39,35)(24,38,30,29)(40,103,67,82)(41,108,53,90)(42,113,78,98)(43,79,64,106)(44,84,50,114)(45,89,75,83)(46,94,61,91)(47,99)(48,104,72,107)(49,109,58,115)(51,80,69,92)(52,85,55,100)(54,95,66,116)(56,105,77,93)(57,110,63,101)(59,81,74,117)(60,86)(62,96,71,102)(65,111,68,87)(70,97,76,88)(73,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117)], [(1,112,73),(2,98,74,26,113,59),(3,84,75,12,114,45),(4,109,76,37,115,70),(5,95,77,23,116,56),(6,81,78,9,117,42),(7,106,40,34,79,67),(8,92,41,20,80,53),(10,103,43,31,82,64),(11,89,44,17,83,50),(13,100,46,28,85,61),(14,86,47),(15,111,48,39,87,72),(16,97,49,25,88,58),(18,108,51,36,90,69),(19,94,52,22,91,55),(21,105,54,33,93,66),(24,102,57,30,96,63),(27,99,60),(29,110,62,38,101,71),(32,107,65,35,104,68)], [(2,6,26,9),(3,11,12,17),(4,16,37,25),(5,21,23,33),(7,31,34,10),(8,36,20,18),(13,22,28,19),(14,27),(15,32,39,35),(24,38,30,29),(40,103,67,82),(41,108,53,90),(42,113,78,98),(43,79,64,106),(44,84,50,114),(45,89,75,83),(46,94,61,91),(47,99),(48,104,72,107),(49,109,58,115),(51,80,69,92),(52,85,55,100),(54,95,66,116),(56,105,77,93),(57,110,63,101),(59,81,74,117),(60,86),(62,96,71,102),(65,111,68,87),(70,97,76,88),(73,112)]])

39 conjugacy classes

class 1  2 3A3B3C3D4A4B6A6B6C6D13A13B13C39A···39X
order12333344666613131339···39
size1132222117117262626264444···4

39 irreducible representations

dim1112244
type+++-+
imageC1C2C4S3Dic3C13⋊C4C39⋊C4
kernelC39⋊Dic3C32×D13C3×C39C3×D13C39C32C3
# reps11244324

Matrix representation of C39⋊Dic3 in GL6(𝔽157)

010000
1561560000
00138155100115
0049732326
00610613947
009214054114
,
01560000
110000
0011815087
001516413112
00409814595
00120179104
,
2800000
1291290000
00251464513
00831051019
00401197284
002724132112

G:=sub<GL(6,GF(157))| [0,156,0,0,0,0,1,156,0,0,0,0,0,0,138,49,6,92,0,0,155,73,106,140,0,0,100,23,139,54,0,0,115,26,47,114],[0,1,0,0,0,0,156,1,0,0,0,0,0,0,1,151,40,120,0,0,18,64,98,17,0,0,150,131,145,9,0,0,87,12,95,104],[28,129,0,0,0,0,0,129,0,0,0,0,0,0,25,83,40,27,0,0,146,105,119,24,0,0,45,101,72,132,0,0,13,9,84,112] >;

C39⋊Dic3 in GAP, Magma, Sage, TeX

C_{39}\rtimes {\rm Dic}_3
% in TeX

G:=Group("C39:Dic3");
// GroupNames label

G:=SmallGroup(468,38);
// by ID

G=gap.SmallGroup(468,38);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-13,10,122,483,4504,5409]);
// Polycyclic

G:=Group<a,b,c|a^39=b^6=1,c^2=b^3,b*a*b^-1=a^25,c*a*c^-1=a^8,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C39⋊Dic3 in TeX

׿
×
𝔽