Extensions 1→N→G→Q→1 with N=C26 and Q=C3×S3

Direct product G=N×Q with N=C26 and Q=C3×S3
dρLabelID
S3×C781562S3xC78468,51

Semidirect products G=N:Q with N=C26 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C26⋊(C3×S3) = C2×D39⋊C3φ: C3×S3/C3C6 ⊆ Aut C26786+C26:(C3xS3)468,35
C262(C3×S3) = C2×S3×C13⋊C3φ: C3×S3/S3C3 ⊆ Aut C26786C26:2(C3xS3)468,34
C263(C3×S3) = C6×D39φ: C3×S3/C32C2 ⊆ Aut C261562C26:3(C3xS3)468,52

Non-split extensions G=N.Q with N=C26 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C26.(C3×S3) = C393C12φ: C3×S3/C3C6 ⊆ Aut C261566-C26.(C3xS3)468,21
C26.2(C3×S3) = Dic3×C13⋊C3φ: C3×S3/S3C3 ⊆ Aut C261566C26.2(C3xS3)468,20
C26.3(C3×S3) = C3×Dic39φ: C3×S3/C32C2 ⊆ Aut C261562C26.3(C3xS3)468,25
C26.4(C3×S3) = Dic3×C39central extension (φ=1)1562C26.4(C3xS3)468,24

׿
×
𝔽