Copied to
clipboard

G = C2×D39⋊C3order 468 = 22·32·13

Direct product of C2 and D39⋊C3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C2×D39⋊C3, D78⋊C3, C781C6, D392C6, C6⋊(C13⋊C6), C26⋊(C3×S3), C132(S3×C6), C13⋊C32D6, C392(C2×C6), (C2×C13⋊C3)⋊S3, C32(C2×C13⋊C6), (C6×C13⋊C3)⋊1C2, (C3×C13⋊C3)⋊2C22, SmallGroup(468,35)

Series: Derived Chief Lower central Upper central

C1C39 — C2×D39⋊C3
C1C13C39C3×C13⋊C3D39⋊C3 — C2×D39⋊C3
C39 — C2×D39⋊C3
C1C2

Generators and relations for C2×D39⋊C3
 G = < a,b,c,d | a2=b39=c2=d3=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b22, dcd-1=b21c >

39C2
39C2
13C3
26C3
39C22
13S3
13C6
13S3
26C6
39C6
39C6
13C32
3D13
3D13
2C13⋊C3
13D6
39C2×C6
13C3×S3
13C3×C6
13C3×S3
3D26
2C2×C13⋊C3
3C13⋊C6
3C13⋊C6
13S3×C6
3C2×C13⋊C6

Character table of C2×D39⋊C3

 class 12A2B2C3A3B3C3D3E6A6B6C6D6E6F6G6H6I13A13B26A26B39A39B39C39D78A78B78C78D
 size 11393921313262621313262639393939666666666666
ρ1111111111111111111111111111111    trivial
ρ21-1-1111111-1-1-1-1-1-111-111-1-11111-1-1-1-1    linear of order 2
ρ31-11-111111-1-1-1-1-11-1-1111-1-11111-1-1-1-1    linear of order 2
ρ411-1-11111111111-1-1-1-1111111111111    linear of order 2
ρ511111ζ3ζ32ζ3ζ321ζ32ζ3ζ32ζ3ζ3ζ32ζ3ζ32111111111111    linear of order 3
ρ61-11-11ζ32ζ3ζ32ζ3-1ζ65ζ6ζ65ζ6ζ32ζ65ζ6ζ311-1-11111-1-1-1-1    linear of order 6
ρ711-1-11ζ3ζ32ζ3ζ321ζ32ζ3ζ32ζ3ζ65ζ6ζ65ζ6111111111111    linear of order 6
ρ811111ζ32ζ3ζ32ζ31ζ3ζ32ζ3ζ32ζ32ζ3ζ32ζ3111111111111    linear of order 3
ρ911-1-11ζ32ζ3ζ32ζ31ζ3ζ32ζ3ζ32ζ6ζ65ζ6ζ65111111111111    linear of order 6
ρ101-11-11ζ3ζ32ζ3ζ32-1ζ6ζ65ζ6ζ65ζ3ζ6ζ65ζ3211-1-11111-1-1-1-1    linear of order 6
ρ111-1-111ζ3ζ32ζ3ζ32-1ζ6ζ65ζ6ζ65ζ65ζ32ζ3ζ611-1-11111-1-1-1-1    linear of order 6
ρ121-1-111ζ32ζ3ζ32ζ3-1ζ65ζ6ζ65ζ6ζ6ζ3ζ32ζ6511-1-11111-1-1-1-1    linear of order 6
ρ132-200-122-1-11-2-211000022-2-2-1-1-1-11111    orthogonal lifted from D6
ρ142200-122-1-1-122-1-100002222-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ152-200-1-1--3-1+-3ζ6ζ6511--31+-3ζ3ζ32000022-2-2-1-1-1-11111    complex lifted from S3×C6
ρ162200-1-1--3-1+-3ζ6ζ65-1-1+-3-1--3ζ65ζ600002222-1-1-1-1-1-1-1-1    complex lifted from C3×S3
ρ172200-1-1+-3-1--3ζ65ζ6-1-1--3-1+-3ζ6ζ6500002222-1-1-1-1-1-1-1-1    complex lifted from C3×S3
ρ182-200-1-1+-3-1--3ζ65ζ611+-31--3ζ32ζ3000022-2-2-1-1-1-11111    complex lifted from S3×C6
ρ196-60060000-600000000-1+13/2-1-13/21+13/21-13/2-1+13/2-1-13/2-1-13/2-1+13/21-13/21+13/21+13/21-13/2    orthogonal lifted from C2×C13⋊C6
ρ20660060000600000000-1-13/2-1+13/2-1+13/2-1-13/2-1-13/2-1+13/2-1+13/2-1-13/2-1-13/2-1+13/2-1+13/2-1-13/2    orthogonal lifted from C13⋊C6
ρ216-60060000-600000000-1-13/2-1+13/21-13/21+13/2-1-13/2-1+13/2-1+13/2-1-13/21+13/21-13/21-13/21+13/2    orthogonal lifted from C2×C13⋊C6
ρ22660060000600000000-1+13/2-1-13/2-1-13/2-1+13/2-1+13/2-1-13/2-1-13/2-1+13/2-1+13/2-1-13/2-1-13/2-1+13/2    orthogonal lifted from C13⋊C6
ρ236-600-30000300000000-1+13/2-1-13/21+13/21-13/2ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ13139133133ζ13113ζ1383ζ1373ζ1363ζ1353ζ1321311138137ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ13213613513232ζ131232ζ131032ζ13932ζ13432ζ13332ζ131312131013432ζ131232ζ131032ζ13932ζ13432ζ13332ζ13139133133ζ13113ζ1383ζ1373ζ1363ζ1353ζ132136135132ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ1321311138137ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313121310134    orthogonal faithful
ρ246600-30000-300000000-1+13/2-1-13/2-1-13/2-1+13/232ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313121310134ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ1321361351323ζ13113ζ1383ζ1373ζ1363ζ1353ζ1321311138137ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ131391331332ζ131232ζ131032ζ13932ζ13432ζ13332ζ13131213101343ζ13113ζ1383ζ1373ζ1363ζ1353ζ1321311138137ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ132136135132ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313913313    orthogonal lifted from D39⋊C3
ρ256-600-30000300000000-1-13/2-1+13/21-13/21+13/23ζ13113ζ1383ζ1373ζ1363ζ1353ζ132131113813732ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313121310134ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313913313ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ132136135132ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ132131113813732ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313913313ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ13131213101343ζ13113ζ1383ζ1373ζ1363ζ1353ζ132136135132    orthogonal faithful
ρ266-600-30000300000000-1+13/2-1-13/21+13/21-13/232ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313121310134ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ1321361351323ζ13113ζ1383ζ1373ζ1363ζ1353ζ1321311138137ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313913313ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313121310134ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ13213111381373ζ13113ζ1383ζ1373ζ1363ζ1353ζ13213613513232ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313913313    orthogonal faithful
ρ276600-30000-300000000-1+13/2-1-13/2-1-13/2-1+13/2ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ13139133133ζ13113ζ1383ζ1373ζ1363ζ1353ζ1321311138137ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ13213613513232ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313121310134ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313913313ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ1321361351323ζ13113ζ1383ζ1373ζ1363ζ1353ζ132131113813732ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313121310134    orthogonal lifted from D39⋊C3
ρ286600-30000-300000000-1-13/2-1+13/2-1+13/2-1-13/2ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ132136135132ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ131391331332ζ131232ζ131032ζ13932ζ13432ζ13332ζ13131213101343ζ13113ζ1383ζ1373ζ1363ζ1353ζ1321311138137ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ13213613513232ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313121310134ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ13139133133ζ13113ζ1383ζ1373ζ1363ζ1353ζ1321311138137    orthogonal lifted from D39⋊C3
ρ296-600-30000300000000-1-13/2-1+13/21-13/21+13/2ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ132136135132ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ131391331332ζ131232ζ131032ζ13932ζ13432ζ13332ζ13131213101343ζ13113ζ1383ζ1373ζ1363ζ1353ζ13213111381373ζ13113ζ1383ζ1373ζ1363ζ1353ζ132136135132ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ131312131013432ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313913313ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ1321311138137    orthogonal faithful
ρ306600-30000-300000000-1-13/2-1+13/2-1+13/2-1-13/23ζ13113ζ1383ζ1373ζ1363ζ1353ζ132131113813732ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313121310134ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313913313ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ1321361351323ζ13113ζ1383ζ1373ζ1363ζ1353ζ1321311138137ζ32ζ131232ζ131032ζ13932ζ13432ζ13332ζ131391331332ζ131232ζ131032ζ13932ζ13432ζ13332ζ1313121310134ζ3ζ13113ζ1383ζ1373ζ1363ζ1353ζ132136135132    orthogonal lifted from D39⋊C3

Smallest permutation representation of C2×D39⋊C3
On 78 points
Generators in S78
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 40)(32 41)(33 42)(34 43)(35 44)(36 45)(37 46)(38 47)(39 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)
(1 39)(2 38)(3 37)(4 36)(5 35)(6 34)(7 33)(8 32)(9 31)(10 30)(11 29)(12 28)(13 27)(14 26)(15 25)(16 24)(17 23)(18 22)(19 21)(40 57)(41 56)(42 55)(43 54)(44 53)(45 52)(46 51)(47 50)(48 49)(58 78)(59 77)(60 76)(61 75)(62 74)(63 73)(64 72)(65 71)(66 70)(67 69)
(2 17 23)(3 33 6)(4 10 28)(5 26 11)(7 19 16)(8 35 38)(9 12 21)(13 37 31)(15 30 36)(18 39 24)(20 32 29)(22 25 34)(40 61 46)(41 77 68)(42 54 51)(43 70 73)(44 47 56)(45 63 78)(48 72 66)(50 65 71)(52 58 76)(53 74 59)(55 67 64)(57 60 69)

G:=sub<Sym(78)| (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)(40,57)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69), (2,17,23)(3,33,6)(4,10,28)(5,26,11)(7,19,16)(8,35,38)(9,12,21)(13,37,31)(15,30,36)(18,39,24)(20,32,29)(22,25,34)(40,61,46)(41,77,68)(42,54,51)(43,70,73)(44,47,56)(45,63,78)(48,72,66)(50,65,71)(52,58,76)(53,74,59)(55,67,64)(57,60,69)>;

G:=Group( (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)(40,57)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69), (2,17,23)(3,33,6)(4,10,28)(5,26,11)(7,19,16)(8,35,38)(9,12,21)(13,37,31)(15,30,36)(18,39,24)(20,32,29)(22,25,34)(40,61,46)(41,77,68)(42,54,51)(43,70,73)(44,47,56)(45,63,78)(48,72,66)(50,65,71)(52,58,76)(53,74,59)(55,67,64)(57,60,69) );

G=PermutationGroup([[(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,40),(32,41),(33,42),(34,43),(35,44),(36,45),(37,46),(38,47),(39,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)], [(1,39),(2,38),(3,37),(4,36),(5,35),(6,34),(7,33),(8,32),(9,31),(10,30),(11,29),(12,28),(13,27),(14,26),(15,25),(16,24),(17,23),(18,22),(19,21),(40,57),(41,56),(42,55),(43,54),(44,53),(45,52),(46,51),(47,50),(48,49),(58,78),(59,77),(60,76),(61,75),(62,74),(63,73),(64,72),(65,71),(66,70),(67,69)], [(2,17,23),(3,33,6),(4,10,28),(5,26,11),(7,19,16),(8,35,38),(9,12,21),(13,37,31),(15,30,36),(18,39,24),(20,32,29),(22,25,34),(40,61,46),(41,77,68),(42,54,51),(43,70,73),(44,47,56),(45,63,78),(48,72,66),(50,65,71),(52,58,76),(53,74,59),(55,67,64),(57,60,69)]])

Matrix representation of C2×D39⋊C3 in GL6(𝔽79)

7800000
0780000
0078000
0007800
0000780
0000078
,
37334331825
34423758663
761526411034
746817126178
73310631622
67757737327
,
7636415051
76194818760
1651312051
3766603176
2146819936
7211474570
,
15641427863
000010
100000
7821464152
000001
010000

G:=sub<GL(6,GF(79))| [78,0,0,0,0,0,0,78,0,0,0,0,0,0,78,0,0,0,0,0,0,78,0,0,0,0,0,0,78,0,0,0,0,0,0,78],[3,34,76,74,73,67,73,42,15,68,3,75,34,37,26,17,10,7,33,58,41,12,63,73,18,6,10,61,16,73,25,63,34,78,22,27],[76,76,16,3,21,72,3,19,51,76,46,1,64,48,3,6,8,14,15,18,12,60,19,74,0,76,0,31,9,5,51,0,51,76,36,70],[15,0,1,78,0,0,64,0,0,2,0,1,14,0,0,14,0,0,2,0,0,64,0,0,78,1,0,15,0,0,63,0,0,2,1,0] >;

C2×D39⋊C3 in GAP, Magma, Sage, TeX

C_2\times D_{39}\rtimes C_3
% in TeX

G:=Group("C2xD39:C3");
// GroupNames label

G:=SmallGroup(468,35);
// by ID

G=gap.SmallGroup(468,35);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-13,483,10804,689]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^39=c^2=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^22,d*c*d^-1=b^21*c>;
// generators/relations

Export

Subgroup lattice of C2×D39⋊C3 in TeX
Character table of C2×D39⋊C3 in TeX

׿
×
𝔽