direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C2×D39⋊C3, D78⋊C3, C78⋊1C6, D39⋊2C6, C6⋊(C13⋊C6), C26⋊(C3×S3), C13⋊2(S3×C6), C13⋊C3⋊2D6, C39⋊2(C2×C6), (C2×C13⋊C3)⋊S3, C3⋊2(C2×C13⋊C6), (C6×C13⋊C3)⋊1C2, (C3×C13⋊C3)⋊2C22, SmallGroup(468,35)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — C39 — C3×C13⋊C3 — D39⋊C3 — C2×D39⋊C3 |
C39 — C2×D39⋊C3 |
Generators and relations for C2×D39⋊C3
G = < a,b,c,d | a2=b39=c2=d3=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b22, dcd-1=b21c >
Character table of C2×D39⋊C3
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 13A | 13B | 26A | 26B | 39A | 39B | 39C | 39D | 78A | 78B | 78C | 78D | |
size | 1 | 1 | 39 | 39 | 2 | 13 | 13 | 26 | 26 | 2 | 13 | 13 | 26 | 26 | 39 | 39 | 39 | 39 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | -1 | 1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | -1 | ζ65 | ζ6 | ζ65 | ζ6 | ζ32 | ζ65 | ζ6 | ζ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ7 | 1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ65 | ζ6 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ8 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ9 | 1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ6 | ζ65 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ10 | 1 | -1 | 1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | -1 | ζ6 | ζ65 | ζ6 | ζ65 | ζ3 | ζ6 | ζ65 | ζ32 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ11 | 1 | -1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | -1 | ζ6 | ζ65 | ζ6 | ζ65 | ζ65 | ζ32 | ζ3 | ζ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ12 | 1 | -1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | -1 | ζ65 | ζ6 | ζ65 | ζ6 | ζ6 | ζ3 | ζ32 | ζ65 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ13 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ15 | 2 | -2 | 0 | 0 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 1 | 1-√-3 | 1+√-3 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | complex lifted from S3×C6 |
ρ16 | 2 | 2 | 0 | 0 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ17 | 2 | 2 | 0 | 0 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ18 | 2 | -2 | 0 | 0 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 1 | 1+√-3 | 1-√-3 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | complex lifted from S3×C6 |
ρ19 | 6 | -6 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√13/2 | -1-√13/2 | 1+√13/2 | 1-√13/2 | -1+√13/2 | -1-√13/2 | -1-√13/2 | -1+√13/2 | 1-√13/2 | 1+√13/2 | 1+√13/2 | 1-√13/2 | orthogonal lifted from C2×C13⋊C6 |
ρ20 | 6 | 6 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√13/2 | -1+√13/2 | -1+√13/2 | -1-√13/2 | -1-√13/2 | -1+√13/2 | -1+√13/2 | -1-√13/2 | -1-√13/2 | -1+√13/2 | -1+√13/2 | -1-√13/2 | orthogonal lifted from C13⋊C6 |
ρ21 | 6 | -6 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√13/2 | -1+√13/2 | 1-√13/2 | 1+√13/2 | -1-√13/2 | -1+√13/2 | -1+√13/2 | -1-√13/2 | 1+√13/2 | 1-√13/2 | 1-√13/2 | 1+√13/2 | orthogonal lifted from C2×C13⋊C6 |
ρ22 | 6 | 6 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√13/2 | -1-√13/2 | -1-√13/2 | -1+√13/2 | -1+√13/2 | -1-√13/2 | -1-√13/2 | -1+√13/2 | -1+√13/2 | -1-√13/2 | -1-√13/2 | -1+√13/2 | orthogonal lifted from C13⋊C6 |
ρ23 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√13/2 | -1-√13/2 | 1+√13/2 | 1-√13/2 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13-ζ139-ζ133-ζ13 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132-ζ1311-ζ138-ζ137 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132-ζ136-ζ135-ζ132 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13-ζ1312-ζ1310-ζ134 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13+ζ139+ζ133+ζ13 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132+ζ136+ζ135+ζ132 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132+ζ1311+ζ138+ζ137 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13+ζ1312+ζ1310+ζ134 | orthogonal faithful |
ρ24 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√13/2 | -1-√13/2 | -1-√13/2 | -1+√13/2 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13-ζ1312-ζ1310-ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132-ζ136-ζ135-ζ132 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132-ζ1311-ζ138-ζ137 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13-ζ139-ζ133-ζ13 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13-ζ1312-ζ1310-ζ134 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132-ζ1311-ζ138-ζ137 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132-ζ136-ζ135-ζ132 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13-ζ139-ζ133-ζ13 | orthogonal lifted from D39⋊C3 |
ρ25 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√13/2 | -1+√13/2 | 1-√13/2 | 1+√13/2 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132-ζ1311-ζ138-ζ137 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13-ζ1312-ζ1310-ζ134 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13-ζ139-ζ133-ζ13 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132-ζ136-ζ135-ζ132 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132+ζ1311+ζ138+ζ137 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13+ζ139+ζ133+ζ13 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13+ζ1312+ζ1310+ζ134 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132+ζ136+ζ135+ζ132 | orthogonal faithful |
ρ26 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√13/2 | -1-√13/2 | 1+√13/2 | 1-√13/2 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13-ζ1312-ζ1310-ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132-ζ136-ζ135-ζ132 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132-ζ1311-ζ138-ζ137 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13-ζ139-ζ133-ζ13 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13+ζ1312+ζ1310+ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132+ζ1311+ζ138+ζ137 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132+ζ136+ζ135+ζ132 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13+ζ139+ζ133+ζ13 | orthogonal faithful |
ρ27 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√13/2 | -1-√13/2 | -1-√13/2 | -1+√13/2 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13-ζ139-ζ133-ζ13 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132-ζ1311-ζ138-ζ137 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132-ζ136-ζ135-ζ132 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13-ζ1312-ζ1310-ζ134 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13-ζ139-ζ133-ζ13 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132-ζ136-ζ135-ζ132 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132-ζ1311-ζ138-ζ137 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13-ζ1312-ζ1310-ζ134 | orthogonal lifted from D39⋊C3 |
ρ28 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√13/2 | -1+√13/2 | -1+√13/2 | -1-√13/2 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132-ζ136-ζ135-ζ132 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13-ζ139-ζ133-ζ13 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13-ζ1312-ζ1310-ζ134 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132-ζ1311-ζ138-ζ137 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132-ζ136-ζ135-ζ132 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13-ζ1312-ζ1310-ζ134 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13-ζ139-ζ133-ζ13 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132-ζ1311-ζ138-ζ137 | orthogonal lifted from D39⋊C3 |
ρ29 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√13/2 | -1+√13/2 | 1-√13/2 | 1+√13/2 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132-ζ136-ζ135-ζ132 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13-ζ139-ζ133-ζ13 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13-ζ1312-ζ1310-ζ134 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132-ζ1311-ζ138-ζ137 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132+ζ136+ζ135+ζ132 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13+ζ1312+ζ1310+ζ134 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13+ζ139+ζ133+ζ13 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132+ζ1311+ζ138+ζ137 | orthogonal faithful |
ρ30 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√13/2 | -1+√13/2 | -1+√13/2 | -1-√13/2 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132-ζ1311-ζ138-ζ137 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13-ζ1312-ζ1310-ζ134 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13-ζ139-ζ133-ζ13 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132-ζ136-ζ135-ζ132 | -ζ3ζ1311-ζ3ζ138-ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132-ζ1311-ζ138-ζ137 | ζ32ζ1312+ζ32ζ1310-ζ32ζ139+ζ32ζ134-ζ32ζ133-ζ32ζ13-ζ139-ζ133-ζ13 | -ζ32ζ1312-ζ32ζ1310+ζ32ζ139-ζ32ζ134+ζ32ζ133+ζ32ζ13-ζ1312-ζ1310-ζ134 | ζ3ζ1311+ζ3ζ138+ζ3ζ137-ζ3ζ136-ζ3ζ135-ζ3ζ132-ζ136-ζ135-ζ132 | orthogonal lifted from D39⋊C3 |
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 40)(32 41)(33 42)(34 43)(35 44)(36 45)(37 46)(38 47)(39 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)
(1 39)(2 38)(3 37)(4 36)(5 35)(6 34)(7 33)(8 32)(9 31)(10 30)(11 29)(12 28)(13 27)(14 26)(15 25)(16 24)(17 23)(18 22)(19 21)(40 57)(41 56)(42 55)(43 54)(44 53)(45 52)(46 51)(47 50)(48 49)(58 78)(59 77)(60 76)(61 75)(62 74)(63 73)(64 72)(65 71)(66 70)(67 69)
(2 17 23)(3 33 6)(4 10 28)(5 26 11)(7 19 16)(8 35 38)(9 12 21)(13 37 31)(15 30 36)(18 39 24)(20 32 29)(22 25 34)(40 61 46)(41 77 68)(42 54 51)(43 70 73)(44 47 56)(45 63 78)(48 72 66)(50 65 71)(52 58 76)(53 74 59)(55 67 64)(57 60 69)
G:=sub<Sym(78)| (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)(40,57)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69), (2,17,23)(3,33,6)(4,10,28)(5,26,11)(7,19,16)(8,35,38)(9,12,21)(13,37,31)(15,30,36)(18,39,24)(20,32,29)(22,25,34)(40,61,46)(41,77,68)(42,54,51)(43,70,73)(44,47,56)(45,63,78)(48,72,66)(50,65,71)(52,58,76)(53,74,59)(55,67,64)(57,60,69)>;
G:=Group( (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)(40,57)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69), (2,17,23)(3,33,6)(4,10,28)(5,26,11)(7,19,16)(8,35,38)(9,12,21)(13,37,31)(15,30,36)(18,39,24)(20,32,29)(22,25,34)(40,61,46)(41,77,68)(42,54,51)(43,70,73)(44,47,56)(45,63,78)(48,72,66)(50,65,71)(52,58,76)(53,74,59)(55,67,64)(57,60,69) );
G=PermutationGroup([[(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,40),(32,41),(33,42),(34,43),(35,44),(36,45),(37,46),(38,47),(39,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)], [(1,39),(2,38),(3,37),(4,36),(5,35),(6,34),(7,33),(8,32),(9,31),(10,30),(11,29),(12,28),(13,27),(14,26),(15,25),(16,24),(17,23),(18,22),(19,21),(40,57),(41,56),(42,55),(43,54),(44,53),(45,52),(46,51),(47,50),(48,49),(58,78),(59,77),(60,76),(61,75),(62,74),(63,73),(64,72),(65,71),(66,70),(67,69)], [(2,17,23),(3,33,6),(4,10,28),(5,26,11),(7,19,16),(8,35,38),(9,12,21),(13,37,31),(15,30,36),(18,39,24),(20,32,29),(22,25,34),(40,61,46),(41,77,68),(42,54,51),(43,70,73),(44,47,56),(45,63,78),(48,72,66),(50,65,71),(52,58,76),(53,74,59),(55,67,64),(57,60,69)]])
Matrix representation of C2×D39⋊C3 ►in GL6(𝔽79)
78 | 0 | 0 | 0 | 0 | 0 |
0 | 78 | 0 | 0 | 0 | 0 |
0 | 0 | 78 | 0 | 0 | 0 |
0 | 0 | 0 | 78 | 0 | 0 |
0 | 0 | 0 | 0 | 78 | 0 |
0 | 0 | 0 | 0 | 0 | 78 |
3 | 73 | 34 | 33 | 18 | 25 |
34 | 42 | 37 | 58 | 6 | 63 |
76 | 15 | 26 | 41 | 10 | 34 |
74 | 68 | 17 | 12 | 61 | 78 |
73 | 3 | 10 | 63 | 16 | 22 |
67 | 75 | 7 | 73 | 73 | 27 |
76 | 3 | 64 | 15 | 0 | 51 |
76 | 19 | 48 | 18 | 76 | 0 |
16 | 51 | 3 | 12 | 0 | 51 |
3 | 76 | 6 | 60 | 31 | 76 |
21 | 46 | 8 | 19 | 9 | 36 |
72 | 1 | 14 | 74 | 5 | 70 |
15 | 64 | 14 | 2 | 78 | 63 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
78 | 2 | 14 | 64 | 15 | 2 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
G:=sub<GL(6,GF(79))| [78,0,0,0,0,0,0,78,0,0,0,0,0,0,78,0,0,0,0,0,0,78,0,0,0,0,0,0,78,0,0,0,0,0,0,78],[3,34,76,74,73,67,73,42,15,68,3,75,34,37,26,17,10,7,33,58,41,12,63,73,18,6,10,61,16,73,25,63,34,78,22,27],[76,76,16,3,21,72,3,19,51,76,46,1,64,48,3,6,8,14,15,18,12,60,19,74,0,76,0,31,9,5,51,0,51,76,36,70],[15,0,1,78,0,0,64,0,0,2,0,1,14,0,0,14,0,0,2,0,0,64,0,0,78,1,0,15,0,0,63,0,0,2,1,0] >;
C2×D39⋊C3 in GAP, Magma, Sage, TeX
C_2\times D_{39}\rtimes C_3
% in TeX
G:=Group("C2xD39:C3");
// GroupNames label
G:=SmallGroup(468,35);
// by ID
G=gap.SmallGroup(468,35);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-13,483,10804,689]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^39=c^2=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^22,d*c*d^-1=b^21*c>;
// generators/relations
Export
Subgroup lattice of C2×D39⋊C3 in TeX
Character table of C2×D39⋊C3 in TeX