Copied to
clipboard

G = C2×S3×C13⋊C3order 468 = 22·32·13

Direct product of C2, S3 and C13⋊C3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C2×S3×C13⋊C3, C783C6, (S3×C26)⋊C3, C133(S3×C6), C262(C3×S3), C394(C2×C6), (S3×C13)⋊2C6, C6⋊(C2×C13⋊C3), C3⋊(C22×C13⋊C3), (C6×C13⋊C3)⋊3C2, (C3×C13⋊C3)⋊4C22, SmallGroup(468,34)

Series: Derived Chief Lower central Upper central

C1C39 — C2×S3×C13⋊C3
C1C13C39C3×C13⋊C3S3×C13⋊C3 — C2×S3×C13⋊C3
C39 — C2×S3×C13⋊C3
C1C2

Generators and relations for C2×S3×C13⋊C3
 G = < a,b,c,d,e | a2=b3=c2=d13=e3=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d9 >

3C2
3C2
13C3
26C3
3C22
13C6
26C6
39C6
39C6
13C32
3C26
3C26
2C13⋊C3
39C2×C6
13C3×S3
13C3×S3
13C3×C6
3C2×C26
2C2×C13⋊C3
3C2×C13⋊C3
3C2×C13⋊C3
13S3×C6
3C22×C13⋊C3

Smallest permutation representation of C2×S3×C13⋊C3
On 78 points
Generators in S78
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 49)(11 50)(12 51)(13 52)(14 53)(15 54)(16 55)(17 56)(18 57)(19 58)(20 59)(21 60)(22 61)(23 62)(24 63)(25 64)(26 65)(27 66)(28 67)(29 68)(30 69)(31 70)(32 71)(33 72)(34 73)(35 74)(36 75)(37 76)(38 77)(39 78)
(1 14 27)(2 15 28)(3 16 29)(4 17 30)(5 18 31)(6 19 32)(7 20 33)(8 21 34)(9 22 35)(10 23 36)(11 24 37)(12 25 38)(13 26 39)(40 53 66)(41 54 67)(42 55 68)(43 56 69)(44 57 70)(45 58 71)(46 59 72)(47 60 73)(48 61 74)(49 62 75)(50 63 76)(51 64 77)(52 65 78)
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 49)(11 50)(12 51)(13 52)(14 66)(15 67)(16 68)(17 69)(18 70)(19 71)(20 72)(21 73)(22 74)(23 75)(24 76)(25 77)(26 78)(27 53)(28 54)(29 55)(30 56)(31 57)(32 58)(33 59)(34 60)(35 61)(36 62)(37 63)(38 64)(39 65)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(15 17 23)(16 20 19)(18 26 24)(21 22 25)(28 30 36)(29 33 32)(31 39 37)(34 35 38)(41 43 49)(42 46 45)(44 52 50)(47 48 51)(54 56 62)(55 59 58)(57 65 63)(60 61 64)(67 69 75)(68 72 71)(70 78 76)(73 74 77)

G:=sub<Sym(78)| (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,70)(32,71)(33,72)(34,73)(35,74)(36,75)(37,76)(38,77)(39,78), (1,14,27)(2,15,28)(3,16,29)(4,17,30)(5,18,31)(6,19,32)(7,20,33)(8,21,34)(9,22,35)(10,23,36)(11,24,37)(12,25,38)(13,26,39)(40,53,66)(41,54,67)(42,55,68)(43,56,69)(44,57,70)(45,58,71)(46,59,72)(47,60,73)(48,61,74)(49,62,75)(50,63,76)(51,64,77)(52,65,78), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,66)(15,67)(16,68)(17,69)(18,70)(19,71)(20,72)(21,73)(22,74)(23,75)(24,76)(25,77)(26,78)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,65), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)(54,56,62)(55,59,58)(57,65,63)(60,61,64)(67,69,75)(68,72,71)(70,78,76)(73,74,77)>;

G:=Group( (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,70)(32,71)(33,72)(34,73)(35,74)(36,75)(37,76)(38,77)(39,78), (1,14,27)(2,15,28)(3,16,29)(4,17,30)(5,18,31)(6,19,32)(7,20,33)(8,21,34)(9,22,35)(10,23,36)(11,24,37)(12,25,38)(13,26,39)(40,53,66)(41,54,67)(42,55,68)(43,56,69)(44,57,70)(45,58,71)(46,59,72)(47,60,73)(48,61,74)(49,62,75)(50,63,76)(51,64,77)(52,65,78), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,66)(15,67)(16,68)(17,69)(18,70)(19,71)(20,72)(21,73)(22,74)(23,75)(24,76)(25,77)(26,78)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,65), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)(54,56,62)(55,59,58)(57,65,63)(60,61,64)(67,69,75)(68,72,71)(70,78,76)(73,74,77) );

G=PermutationGroup([[(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,49),(11,50),(12,51),(13,52),(14,53),(15,54),(16,55),(17,56),(18,57),(19,58),(20,59),(21,60),(22,61),(23,62),(24,63),(25,64),(26,65),(27,66),(28,67),(29,68),(30,69),(31,70),(32,71),(33,72),(34,73),(35,74),(36,75),(37,76),(38,77),(39,78)], [(1,14,27),(2,15,28),(3,16,29),(4,17,30),(5,18,31),(6,19,32),(7,20,33),(8,21,34),(9,22,35),(10,23,36),(11,24,37),(12,25,38),(13,26,39),(40,53,66),(41,54,67),(42,55,68),(43,56,69),(44,57,70),(45,58,71),(46,59,72),(47,60,73),(48,61,74),(49,62,75),(50,63,76),(51,64,77),(52,65,78)], [(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,49),(11,50),(12,51),(13,52),(14,66),(15,67),(16,68),(17,69),(18,70),(19,71),(20,72),(21,73),(22,74),(23,75),(24,76),(25,77),(26,78),(27,53),(28,54),(29,55),(30,56),(31,57),(32,58),(33,59),(34,60),(35,61),(36,62),(37,63),(38,64),(39,65)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(15,17,23),(16,20,19),(18,26,24),(21,22,25),(28,30,36),(29,33,32),(31,39,37),(34,35,38),(41,43,49),(42,46,45),(44,52,50),(47,48,51),(54,56,62),(55,59,58),(57,65,63),(60,61,64),(67,69,75),(68,72,71),(70,78,76),(73,74,77)]])

42 conjugacy classes

class 1 2A2B2C3A3B3C3D3E6A6B6C6D6E6F6G6H6I13A13B13C13D26A26B26C26D26E···26L39A39B39C39D78A78B78C78D
order122233333666666666131313132626262626···263939393978787878
size113321313262621313262639393939333333339···966666666

42 irreducible representations

dim111111222233366
type+++++
imageC1C2C2C3C6C6S3D6C3×S3S3×C6C13⋊C3C2×C13⋊C3C2×C13⋊C3S3×C13⋊C3C2×S3×C13⋊C3
kernelC2×S3×C13⋊C3S3×C13⋊C3C6×C13⋊C3S3×C26S3×C13C78C2×C13⋊C3C13⋊C3C26C13D6S3C6C2C1
# reps121242112248444

Matrix representation of C2×S3×C13⋊C3 in GL5(𝔽79)

10000
01000
007800
000780
000078
,
142000
6277000
00100
00010
00001
,
7837000
01000
007800
000780
000078
,
10000
01000
00663966
001030
000138
,
230000
023000
00523922
00552378
0045594

G:=sub<GL(5,GF(79))| [1,0,0,0,0,0,1,0,0,0,0,0,78,0,0,0,0,0,78,0,0,0,0,0,78],[1,62,0,0,0,42,77,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[78,0,0,0,0,37,1,0,0,0,0,0,78,0,0,0,0,0,78,0,0,0,0,0,78],[1,0,0,0,0,0,1,0,0,0,0,0,66,1,0,0,0,39,0,1,0,0,66,30,38],[23,0,0,0,0,0,23,0,0,0,0,0,52,55,45,0,0,39,23,59,0,0,22,78,4] >;

C2×S3×C13⋊C3 in GAP, Magma, Sage, TeX

C_2\times S_3\times C_{13}\rtimes C_3
% in TeX

G:=Group("C2xS3xC13:C3");
// GroupNames label

G:=SmallGroup(468,34);
// by ID

G=gap.SmallGroup(468,34);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-13,483,689]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^13=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^9>;
// generators/relations

Export

Subgroup lattice of C2×S3×C13⋊C3 in TeX

׿
×
𝔽