Extensions 1→N→G→Q→1 with N=C39 and Q=D6

Direct product G=N×Q with N=C39 and Q=D6
dρLabelID
S3×C781562S3xC78468,51

Semidirect products G=N:Q with N=C39 and Q=D6
extensionφ:Q→Aut NdρLabelID
C391D6 = C3⋊S3×D13φ: D6/C3C22 ⊆ Aut C39117C39:1D6468,43
C392D6 = S3×D39φ: D6/C3C22 ⊆ Aut C39784+C39:2D6468,45
C393D6 = D39⋊S3φ: D6/C3C22 ⊆ Aut C39784C39:3D6468,46
C394D6 = C3×S3×D13φ: D6/S3C2 ⊆ Aut C39784C39:4D6468,42
C395D6 = S32×C13φ: D6/S3C2 ⊆ Aut C39784C39:5D6468,44
C396D6 = C2×C3⋊D39φ: D6/C6C2 ⊆ Aut C39234C39:6D6468,54
C397D6 = C6×D39φ: D6/C6C2 ⊆ Aut C391562C39:7D6468,52
C398D6 = C3⋊S3×C26φ: D6/C6C2 ⊆ Aut C39234C39:8D6468,53

Non-split extensions G=N.Q with N=C39 and Q=D6
extensionφ:Q→Aut NdρLabelID
C39.D6 = D9×D13φ: D6/C3C22 ⊆ Aut C391174+C39.D6468,11
C39.2D6 = D234φ: D6/C6C2 ⊆ Aut C392342+C39.2D6468,17
C39.3D6 = D9×C26φ: D6/C6C2 ⊆ Aut C392342C39.3D6468,16

׿
×
𝔽