Aliases: GL2(𝔽5), C4.5S5, SL2(𝔽5)⋊1C4, C4.A5.2C2, C2.2(A5⋊C4), Aut(C52), SmallGroup(480,218)
Series: Chief►Derived ►Lower central ►Upper central
SL2(𝔽5) — GL2(𝔽5) |
SL2(𝔽5) — GL2(𝔽5) |
Character table of GL2(𝔽5)
class | 1 | 2A | 2B | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 5 | 6 | 8A | 8B | 10 | 12A | 12B | 20A | 20B | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 30 | 20 | 1 | 1 | 30 | 30 | 30 | 30 | 30 | 24 | 20 | 20 | 20 | 24 | 20 | 20 | 24 | 24 | 20 | 20 | 20 | 20 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | -1 | -1 | i | -i | i | -i | 1 | 1 | 1 | i | -i | 1 | -1 | -1 | -1 | -1 | -i | i | -i | i | linear of order 4 |
ρ4 | 1 | 1 | -1 | 1 | -1 | -1 | -i | i | -i | i | 1 | 1 | 1 | -i | i | 1 | -1 | -1 | -1 | -1 | i | -i | i | -i | linear of order 4 |
ρ5 | 4 | 4 | 0 | 1 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 2 | 2 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S5 |
ρ6 | 4 | 4 | 0 | 1 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -2 | -2 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from S5 |
ρ7 | 4 | 4 | 0 | 1 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 2i | -2i | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | complex lifted from A5⋊C4 |
ρ8 | 4 | 4 | 0 | 1 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -2i | 2i | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | complex lifted from A5⋊C4 |
ρ9 | 4 | -4 | 0 | -2 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 1 | 2i | -2i | -i | i | 0 | 0 | 0 | 0 | complex faithful |
ρ10 | 4 | -4 | 0 | -2 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 1 | -2i | 2i | i | -i | 0 | 0 | 0 | 0 | complex faithful |
ρ11 | 4 | -4 | 0 | 1 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | 1 | -i | i | -i | i | 2ζ87ζ3+ζ87 | 2ζ8ζ3+ζ8 | 2ζ83ζ3+ζ83 | 2ζ85ζ3+ζ85 | complex faithful |
ρ12 | 4 | -4 | 0 | 1 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | 1 | i | -i | i | -i | 2ζ85ζ3+ζ85 | 2ζ83ζ3+ζ83 | 2ζ8ζ3+ζ8 | 2ζ87ζ3+ζ87 | complex faithful |
ρ13 | 4 | -4 | 0 | 1 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | 1 | -i | i | -i | i | 2ζ83ζ3+ζ83 | 2ζ85ζ3+ζ85 | 2ζ87ζ3+ζ87 | 2ζ8ζ3+ζ8 | complex faithful |
ρ14 | 4 | -4 | 0 | 1 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | 1 | i | -i | i | -i | 2ζ8ζ3+ζ8 | 2ζ87ζ3+ζ87 | 2ζ85ζ3+ζ85 | 2ζ83ζ3+ζ83 | complex faithful |
ρ15 | 5 | 5 | 1 | -1 | 5 | 5 | 1 | 1 | 1 | 1 | 1 | 0 | -1 | -1 | -1 | 0 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S5 |
ρ16 | 5 | 5 | 1 | -1 | 5 | 5 | -1 | -1 | -1 | -1 | 1 | 0 | -1 | 1 | 1 | 0 | -1 | -1 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from S5 |
ρ17 | 5 | 5 | -1 | -1 | -5 | -5 | i | -i | i | -i | 1 | 0 | -1 | -i | i | 0 | 1 | 1 | 0 | 0 | i | -i | i | -i | complex lifted from A5⋊C4 |
ρ18 | 5 | 5 | -1 | -1 | -5 | -5 | -i | i | -i | i | 1 | 0 | -1 | i | -i | 0 | 1 | 1 | 0 | 0 | -i | i | -i | i | complex lifted from A5⋊C4 |
ρ19 | 6 | 6 | -2 | 0 | 6 | 6 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S5 |
ρ20 | 6 | 6 | 2 | 0 | -6 | -6 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from A5⋊C4 |
ρ21 | 6 | -6 | 0 | 0 | -6i | 6i | -1-i | -1+i | 1+i | 1-i | 0 | 1 | 0 | 0 | 0 | -1 | 0 | 0 | -i | i | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 6 | -6 | 0 | 0 | 6i | -6i | -1+i | -1-i | 1-i | 1+i | 0 | 1 | 0 | 0 | 0 | -1 | 0 | 0 | i | -i | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 6 | -6 | 0 | 0 | 6i | -6i | 1-i | 1+i | -1+i | -1-i | 0 | 1 | 0 | 0 | 0 | -1 | 0 | 0 | i | -i | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 6 | -6 | 0 | 0 | -6i | 6i | 1+i | 1-i | -1-i | -1+i | 0 | 1 | 0 | 0 | 0 | -1 | 0 | 0 | -i | i | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)
(1 7 13 19)(3 24 10 23)(4 17 21 18)(5 9 6 16)(11 15 12 22)
G:=sub<Sym(24)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24), (1,7,13,19)(3,24,10,23)(4,17,21,18)(5,9,6,16)(11,15,12,22)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24), (1,7,13,19)(3,24,10,23)(4,17,21,18)(5,9,6,16)(11,15,12,22) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)], [(1,7,13,19),(3,24,10,23),(4,17,21,18),(5,9,6,16),(11,15,12,22)]])
G:=TransitiveGroup(24,1353);
Matrix representation of GL2(𝔽5) ►in GL2(𝔽5) generated by
1 | 4 |
2 | 1 |
0 | 3 |
4 | 1 |
G:=sub<GL(2,GF(5))| [1,2,4,1],[0,4,3,1] >;
GL2(𝔽5) in GAP, Magma, Sage, TeX
{\rm GL}_2({\mathbb F}_5)
% in TeX
G:=Group("GL(2,5)");
// GroupNames label
G:=SmallGroup(480,218);
// by ID
G=gap.SmallGroup(480,218);
# by ID
Export
Subgroup lattice of GL2(𝔽5) in TeX
Character table of GL2(𝔽5) in TeX