Copied to
clipboard

G = A5⋊C8order 480 = 25·3·5

The semidirect product of A5 and C8 acting via C8/C4=C2

non-abelian, not soluble

Aliases: A5⋊C8, C4.4S5, (C2×A5).C4, (C4×A5).3C2, C2.1(A5⋊C4), SmallGroup(480,217)

Series: ChiefDerived Lower central Upper central

C1C2C4C4×A5 — A5⋊C8
A5 — A5⋊C8
A5 — A5⋊C8
C1C4

15C2
15C2
10C3
6C5
5C22
15C22
15C4
15C22
10C6
10S3
10S3
6D5
6D5
6C10
5C23
10C8
15C2×C4
15C2×C4
30C8
5A4
10C12
10Dic3
10D6
6Dic5
6C20
6D10
5C22×C4
15C2×C8
15C2×C8
5C2×A4
10C3⋊C8
10C4×S3
10C24
6C4×D5
6C5⋊C8
6C5⋊C8
15C22⋊C8
5C4×A4
10S3×C8
6D5⋊C8
5A4⋊C8

Character table of A5⋊C8

 class 12A2B2C34A4B4C4D568A8B8C8D8E8F8G8H1012A12B20A20B24A24B24C24D
 size 1115152011151524201010101030303030242020242420202020
ρ11111111111111111111111111111    trivial
ρ211111111111-1-1-1-1-1-1-1-111111-1-1-1-1    linear of order 2
ρ311111-1-1-1-111-iii-ii-ii-i1-1-1-1-1ii-i-i    linear of order 4
ρ411111-1-1-1-111i-i-ii-ii-ii1-1-1-1-1-i-iii    linear of order 4
ρ51-1-111i-ii-i1-1ζ83ζ8ζ85ζ87ζ85ζ87ζ8ζ83-1-ii-iiζ8ζ85ζ87ζ83    linear of order 8
ρ61-1-111i-ii-i1-1ζ87ζ85ζ8ζ83ζ8ζ83ζ85ζ87-1-ii-iiζ85ζ8ζ83ζ87    linear of order 8
ρ71-1-111-ii-ii1-1ζ85ζ87ζ83ζ8ζ83ζ8ζ87ζ85-1i-ii-iζ87ζ83ζ8ζ85    linear of order 8
ρ81-1-111-ii-ii1-1ζ8ζ83ζ87ζ85ζ87ζ85ζ83ζ8-1i-ii-iζ83ζ87ζ85ζ8    linear of order 8
ρ9440014400-1122220000-111-1-1-1-1-1-1    orthogonal lifted from S5
ρ10440014400-11-2-2-2-20000-111-1-11111    orthogonal lifted from S5
ρ1144001-4-400-112i-2i-2i2i0000-1-1-111ii-i-i    complex lifted from A5⋊C4
ρ1244001-4-400-11-2i2i2i-2i0000-1-1-111-i-iii    complex lifted from A5⋊C4
ρ134-4001-4i4i00-1-1883878500001i-i-iiζ87ζ83ζ8ζ85    complex faithful
ρ144-40014i-4i00-1-1838858700001-iii-iζ85ζ8ζ83ζ87    complex faithful
ρ154-40014i-4i00-1-1878588300001-iii-iζ8ζ85ζ87ζ83    complex faithful
ρ164-4001-4i4i00-1-1858783800001i-i-iiζ83ζ87ζ85ζ8    complex faithful
ρ175511-155110-1-1-1-1-111110-1-100-1-1-1-1    orthogonal lifted from S5
ρ185511-155110-11111-1-1-1-10-1-1001111    orthogonal lifted from S5
ρ195511-1-5-5-1-10-1-iii-i-ii-ii01100ii-i-i    complex lifted from A5⋊C4
ρ205511-1-5-5-1-10-1i-i-iii-ii-i01100-i-iii    complex lifted from A5⋊C4
ρ215-5-11-1-5i5i-ii01ζ8ζ83ζ87ζ85ζ83ζ8ζ87ζ850-ii00ζ83ζ87ζ85ζ8    complex faithful
ρ225-5-11-1-5i5i-ii01ζ85ζ87ζ83ζ8ζ87ζ85ζ83ζ80-ii00ζ87ζ83ζ8ζ85    complex faithful
ρ235-5-11-15i-5ii-i01ζ87ζ85ζ8ζ83ζ85ζ87ζ8ζ830i-i00ζ85ζ8ζ83ζ87    complex faithful
ρ245-5-11-15i-5ii-i01ζ83ζ8ζ85ζ87ζ8ζ83ζ85ζ870i-i00ζ8ζ85ζ87ζ83    complex faithful
ρ2566-2-2066-2-21000000000100110000    orthogonal lifted from S5
ρ2666-2-20-6-6221000000000100-1-10000    orthogonal lifted from A5⋊C4
ρ276-62-206i-6i-2i2i1000000000-100-ii0000    complex faithful, Schur index 2
ρ286-62-20-6i6i2i-2i1000000000-100i-i0000    complex faithful, Schur index 2

Smallest permutation representation of A5⋊C8
On 40 points
Generators in S40
(1 10 23 40 3 12 17 34)(2 11 20 37 4 9 26 31)(5 38 28 15 7 32 22 13)(6 35 25 16 8 29 19 14)(18 39 21 30 24 33 27 36)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40)

G:=sub<Sym(40)| (1,10,23,40,3,12,17,34)(2,11,20,37,4,9,26,31)(5,38,28,15,7,32,22,13)(6,35,25,16,8,29,19,14)(18,39,21,30,24,33,27,36), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40)>;

G:=Group( (1,10,23,40,3,12,17,34)(2,11,20,37,4,9,26,31)(5,38,28,15,7,32,22,13)(6,35,25,16,8,29,19,14)(18,39,21,30,24,33,27,36), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40) );

G=PermutationGroup([[(1,10,23,40,3,12,17,34),(2,11,20,37,4,9,26,31),(5,38,28,15,7,32,22,13),(6,35,25,16,8,29,19,14),(18,39,21,30,24,33,27,36)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40)]])

Matrix representation of A5⋊C8 in GL5(𝔽241)

2330000
00001
01000
00010
0240240240240
,
1770000
00100
00010
01000
00001

G:=sub<GL(5,GF(241))| [233,0,0,0,0,0,0,1,0,240,0,0,0,0,240,0,0,0,1,240,0,1,0,0,240],[177,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

A5⋊C8 in GAP, Magma, Sage, TeX

A_5\rtimes C_8
% in TeX

G:=Group("A5:C8");
// GroupNames label

G:=SmallGroup(480,217);
// by ID

G=gap.SmallGroup(480,217);
# by ID

Export

Subgroup lattice of A5⋊C8 in TeX
Character table of A5⋊C8 in TeX

׿
×
𝔽