Extensions 1→N→G→Q→1 with N=C2xDic5 and Q=D6

Direct product G=NxQ with N=C2xDic5 and Q=D6
dρLabelID
C22xS3xDic5240C2^2xS3xDic5480,1115

Semidirect products G=N:Q with N=C2xDic5 and Q=D6
extensionφ:Q→Out NdρLabelID
(C2xDic5):1D6 = D30:4D4φ: D6/C3C22 ⊆ Out C2xDic5120(C2xDic5):1D6480,551
(C2xDic5):2D6 = D30:5D4φ: D6/C3C22 ⊆ Out C2xDic5120(C2xDic5):2D6480,552
(C2xDic5):3D6 = C15:C22wrC2φ: D6/C3C22 ⊆ Out C2xDic5120(C2xDic5):3D6480,644
(C2xDic5):4D6 = (C2xC10):11D12φ: D6/C3C22 ⊆ Out C2xDic5120(C2xDic5):4D6480,646
(C2xDic5):5D6 = D30:18D4φ: D6/C3C22 ⊆ Out C2xDic5120(C2xDic5):5D6480,648
(C2xDic5):6D6 = D30:19D4φ: D6/C3C22 ⊆ Out C2xDic5120(C2xDic5):6D6480,649
(C2xDic5):7D6 = D30:8D4φ: D6/C3C22 ⊆ Out C2xDic5120(C2xDic5):7D6480,653
(C2xDic5):8D6 = D12:14D10φ: D6/C3C22 ⊆ Out C2xDic51208+(C2xDic5):8D6480,1103
(C2xDic5):9D6 = C15:2+ 1+4φ: D6/C3C22 ⊆ Out C2xDic51204(C2xDic5):9D6480,1125
(C2xDic5):10D6 = S3xD10:C4φ: D6/S3C2 ⊆ Out C2xDic5120(C2xDic5):10D6480,548
(C2xDic5):11D6 = D30.27D4φ: D6/S3C2 ⊆ Out C2xDic5120(C2xDic5):11D6480,549
(C2xDic5):12D6 = S3xC23.D5φ: D6/S3C2 ⊆ Out C2xDic5120(C2xDic5):12D6480,630
(C2xDic5):13D6 = D30.45D4φ: D6/S3C2 ⊆ Out C2xDic5120(C2xDic5):13D6480,637
(C2xDic5):14D6 = S3xD4:2D5φ: D6/S3C2 ⊆ Out C2xDic51208-(C2xDic5):14D6480,1099
(C2xDic5):15D6 = D30.C23φ: D6/S3C2 ⊆ Out C2xDic51208+(C2xDic5):15D6480,1100
(C2xDic5):16D6 = C2xS3xC5:D4φ: D6/S3C2 ⊆ Out C2xDic5120(C2xDic5):16D6480,1123
(C2xDic5):17D6 = C2xD10:D6φ: D6/S3C2 ⊆ Out C2xDic5120(C2xDic5):17D6480,1124
(C2xDic5):18D6 = D5xD6:C4φ: D6/C6C2 ⊆ Out C2xDic5120(C2xDic5):18D6480,547
(C2xDic5):19D6 = C2xD6:Dic5φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5):19D6480,614
(C2xDic5):20D6 = C2xD30:4C4φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5):20D6480,616
(C2xDic5):21D6 = C2xD5xD12φ: D6/C6C2 ⊆ Out C2xDic5120(C2xDic5):21D6480,1087
(C2xDic5):22D6 = D5xC4oD12φ: D6/C6C2 ⊆ Out C2xDic51204(C2xDic5):22D6480,1090
(C2xDic5):23D6 = C2xDic3.D10φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5):23D6480,1116
(C2xDic5):24D6 = C22xC5:D12φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5):24D6480,1120
(C2xDic5):25D6 = S3xC2xC4xD5φ: trivial image120(C2xDic5):25D6480,1086
(C2xDic5):26D6 = C22xD30.C2φ: trivial image240(C2xDic5):26D6480,1117

Non-split extensions G=N.Q with N=C2xDic5 and Q=D6
extensionφ:Q→Out NdρLabelID
(C2xDic5).1D6 = Dic15.Q8φ: D6/C3C22 ⊆ Out C2xDic5480(C2xDic5).1D6480,412
(C2xDic5).2D6 = C4:Dic3:D5φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).2D6480,413
(C2xDic5).3D6 = Dic15.2Q8φ: D6/C3C22 ⊆ Out C2xDic5480(C2xDic5).3D6480,415
(C2xDic5).4D6 = D6:C4.D5φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).4D6480,417
(C2xDic5).5D6 = C60:5C4:C2φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).5D6480,418
(C2xDic5).6D6 = C4:Dic5:S3φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).6D6480,421
(C2xDic5).7D6 = D6:Dic5:C2φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).7D6480,427
(C2xDic5).8D6 = D6:Dic10φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).8D6480,428
(C2xDic5).9D6 = Dic3.D20φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).9D6480,429
(C2xDic5).10D6 = D30.34D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).10D6480,430
(C2xDic5).11D6 = D30.35D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).11D6480,431
(C2xDic5).12D6 = (C4xDic3):D5φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).12D6480,439
(C2xDic5).13D6 = C60.45D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).13D6480,441
(C2xDic5).14D6 = (C4xDic15):C2φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).14D6480,442
(C2xDic5).15D6 = D6:Dic5.C2φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).15D6480,443
(C2xDic5).16D6 = C60.46D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).16D6480,445
(C2xDic5).17D6 = C60.89D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).17D6480,446
(C2xDic5).18D6 = C60.47D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).18D6480,450
(C2xDic5).19D6 = D30:8Q8φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).19D6480,453
(C2xDic5).20D6 = Dic3.3Dic10φ: D6/C3C22 ⊆ Out C2xDic5480(C2xDic5).20D6480,455
(C2xDic5).21D6 = C10.D4:S3φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).21D6480,456
(C2xDic5).22D6 = C60.6Q8φ: D6/C3C22 ⊆ Out C2xDic5480(C2xDic5).22D6480,457
(C2xDic5).23D6 = Dic15.4Q8φ: D6/C3C22 ⊆ Out C2xDic5480(C2xDic5).23D6480,458
(C2xDic5).24D6 = D30:9Q8φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).24D6480,459
(C2xDic5).25D6 = C12.Dic10φ: D6/C3C22 ⊆ Out C2xDic5480(C2xDic5).25D6480,460
(C2xDic5).26D6 = Dic15:8Q8φ: D6/C3C22 ⊆ Out C2xDic5480(C2xDic5).26D6480,461
(C2xDic5).27D6 = C60.48D4φ: D6/C3C22 ⊆ Out C2xDic5480(C2xDic5).27D6480,465
(C2xDic5).28D6 = D30:10Q8φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).28D6480,466
(C2xDic5).29D6 = D30:Q8φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).29D6480,487
(C2xDic5).30D6 = D10.16D12φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).30D6480,489
(C2xDic5).31D6 = D10.17D12φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).31D6480,490
(C2xDic5).32D6 = D30:2Q8φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).32D6480,495
(C2xDic5).33D6 = D30:D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).33D6480,496
(C2xDic5).34D6 = D10:1Dic6φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).34D6480,497
(C2xDic5).35D6 = D10:2Dic6φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).35D6480,498
(C2xDic5).36D6 = D30:3Q8φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).36D6480,500
(C2xDic5).37D6 = D30:4Q8φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).37D6480,505
(C2xDic5).38D6 = Dic15.D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).38D6480,506
(C2xDic5).39D6 = D10:4Dic6φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).39D6480,507
(C2xDic5).40D6 = D6:3Dic10φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).40D6480,508
(C2xDic5).41D6 = D30.6D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).41D6480,509
(C2xDic5).42D6 = D6:4Dic10φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).42D6480,512
(C2xDic5).43D6 = D30.7D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).43D6480,514
(C2xDic5).44D6 = D10:C4:S3φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).44D6480,528
(C2xDic5).45D6 = D6:D20φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).45D6480,530
(C2xDic5).46D6 = C60:6D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).46D6480,536
(C2xDic5).47D6 = D30:12D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).47D6480,537
(C2xDic5).48D6 = Dic15.31D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).48D6480,540
(C2xDic5).49D6 = C20:2D12φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).49D6480,542
(C2xDic5).50D6 = C20:4Dic6φ: D6/C3C22 ⊆ Out C2xDic5480(C2xDic5).50D6480,545
(C2xDic5).51D6 = C20:Dic6φ: D6/C3C22 ⊆ Out C2xDic5480(C2xDic5).51D6480,546
(C2xDic5).52D6 = Dic15.19D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).52D6480,602
(C2xDic5).53D6 = C23.13(S3xD5)φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).53D6480,606
(C2xDic5).54D6 = C23.14(S3xD5)φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).54D6480,607
(C2xDic5).55D6 = (C2xC30).D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).55D6480,612
(C2xDic5).56D6 = C6.(C2xD20)φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).56D6480,613
(C2xDic5).57D6 = C10.(C2xD12)φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).57D6480,618
(C2xDic5).58D6 = (C2xC10).D12φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).58D6480,619
(C2xDic5).59D6 = C23.17(S3xD5)φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).59D6480,624
(C2xDic5).60D6 = (C6xD5):D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).60D6480,625
(C2xDic5).61D6 = Dic15:3D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).61D6480,626
(C2xDic5).62D6 = D30:7D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).62D6480,633
(C2xDic5).63D6 = Dic15:4D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).63D6480,634
(C2xDic5).64D6 = D30.16D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).64D6480,638
(C2xDic5).65D6 = (C2xC6):D20φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).65D6480,645
(C2xDic5).66D6 = Dic15:18D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).66D6480,647
(C2xDic5).67D6 = (C2xC10):8Dic6φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).67D6480,651
(C2xDic5).68D6 = Dic15.48D4φ: D6/C3C22 ⊆ Out C2xDic5240(C2xDic5).68D6480,652
(C2xDic5).69D6 = C30.C24φ: D6/C3C22 ⊆ Out C2xDic52404(C2xDic5).69D6480,1080
(C2xDic5).70D6 = C15:2- 1+4φ: D6/C3C22 ⊆ Out C2xDic52408-(C2xDic5).70D6480,1096
(C2xDic5).71D6 = Dic5.D12φ: D6/C3C22 ⊆ Out C2xDic51208+(C2xDic5).71D6480,250
(C2xDic5).72D6 = Dic5.4D12φ: D6/C3C22 ⊆ Out C2xDic52408-(C2xDic5).72D6480,251
(C2xDic5).73D6 = (C2xC60).C4φ: D6/C3C22 ⊆ Out C2xDic52404(C2xDic5).73D6480,310
(C2xDic5).74D6 = C5:(C12.D4)φ: D6/C3C22 ⊆ Out C2xDic51204(C2xDic5).74D6480,318
(C2xDic5).75D6 = C5:C8.D6φ: D6/C3C22 ⊆ Out C2xDic52408(C2xDic5).75D6480,1003
(C2xDic5).76D6 = D15:C8:C2φ: D6/C3C22 ⊆ Out C2xDic52408(C2xDic5).76D6480,1005
(C2xDic5).77D6 = Dic10.Dic3φ: D6/C3C22 ⊆ Out C2xDic52408(C2xDic5).77D6480,1066
(C2xDic5).78D6 = Dic3:5Dic10φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).78D6480,400
(C2xDic5).79D6 = Dic15:5Q8φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).79D6480,401
(C2xDic5).80D6 = (C2xC20).D6φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).80D6480,402
(C2xDic5).81D6 = Dic15:1Q8φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).81D6480,403
(C2xDic5).82D6 = Dic3:Dic10φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).82D6480,404
(C2xDic5).83D6 = Dic15:Q8φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).83D6480,405
(C2xDic5).84D6 = Dic3xDic10φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).84D6480,406
(C2xDic5).85D6 = Dic15:6Q8φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).85D6480,407
(C2xDic5).86D6 = Dic5.1Dic6φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).86D6480,410
(C2xDic5).87D6 = Dic5.2Dic6φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).87D6480,411
(C2xDic5).88D6 = (S3xC20):5C4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).88D6480,414
(C2xDic5).89D6 = Dic30:14C4φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).89D6480,416
(C2xDic5).90D6 = Dic3.Dic10φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).90D6480,419
(C2xDic5).91D6 = Dic15:7Q8φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).91D6480,420
(C2xDic5).92D6 = Dic3.2Dic10φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).92D6480,422
(C2xDic5).93D6 = (C4xD15):8C4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).93D6480,423
(C2xDic5).94D6 = D30.D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).94D6480,432
(C2xDic5).95D6 = (C2xC12).D10φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).95D6480,437
(C2xDic5).96D6 = (C2xC60).C22φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).96D6480,438
(C2xDic5).97D6 = (D5xDic3):C4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).97D6480,469
(C2xDic5).98D6 = D10.19(C4xS3)φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).98D6480,470
(C2xDic5).99D6 = Dic3:4D20φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).99D6480,471
(C2xDic5).100D6 = Dic15:13D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).100D6480,472
(C2xDic5).101D6 = S3xC10.D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).101D6480,475
(C2xDic5).102D6 = (S3xDic5):C4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).102D6480,476
(C2xDic5).103D6 = D30.23(C2xC4)φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).103D6480,479
(C2xDic5).104D6 = D30.Q8φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).104D6480,480
(C2xDic5).105D6 = Dic15:14D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).105D6480,482
(C2xDic5).106D6 = D6:1Dic10φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).106D6480,486
(C2xDic5).107D6 = Dic5:D12φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).107D6480,492
(C2xDic5).108D6 = D6:2Dic10φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).108D6480,493
(C2xDic5).109D6 = (C2xD12).D5φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).109D6480,499
(C2xDic5).110D6 = S3xC4:Dic5φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).110D6480,502
(C2xDic5).111D6 = D6.D20φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).111D6480,503
(C2xDic5).112D6 = D60:14C4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).112D6480,504
(C2xDic5).113D6 = Dic15:8D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).113D6480,511
(C2xDic5).114D6 = D30.2Q8φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).114D6480,513
(C2xDic5).115D6 = C15:17(C4xD4)φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).115D6480,517
(C2xDic5).116D6 = Dic15:9D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).116D6480,518
(C2xDic5).117D6 = C15:22(C4xD4)φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).117D6480,522
(C2xDic5).118D6 = Dic15:2D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).118D6480,529
(C2xDic5).119D6 = (C2xDic6):D5φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).119D6480,531
(C2xDic5).120D6 = D6.9D20φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).120D6480,533
(C2xDic5).121D6 = D30:2D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).121D6480,535
(C2xDic5).122D6 = Dic15.10D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).122D6480,538
(C2xDic5).123D6 = C23.D5:S3φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).123D6480,601
(C2xDic5).124D6 = C23.26(S3xD5)φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).124D6480,605
(C2xDic5).125D6 = C23.48(S3xD5)φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).125D6480,608
(C2xDic5).126D6 = D30:6D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).126D6480,609
(C2xDic5).127D6 = C6.(D4xD5)φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).127D6480,610
(C2xDic5).128D6 = Dic3xC5:D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).128D6480,629
(C2xDic5).129D6 = (S3xC10).D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).129D6480,631
(C2xDic5).130D6 = C15:28(C4xD4)φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).130D6480,632
(C2xDic5).131D6 = Dic15:16D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).131D6480,635
(C2xDic5).132D6 = Dic15:17D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).132D6480,636
(C2xDic5).133D6 = (S3xC10):D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).133D6480,641
(C2xDic5).134D6 = Dic15:5D4φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).134D6480,643
(C2xDic5).135D6 = C2xS3xDic10φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).135D6480,1078
(C2xDic5).136D6 = C2xD12:D5φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).136D6480,1079
(C2xDic5).137D6 = C2xD60:C2φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).137D6480,1081
(C2xDic5).138D6 = C2xD15:Q8φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).138D6480,1082
(C2xDic5).139D6 = C2xDic5.D6φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).139D6480,1113
(C2xDic5).140D6 = C2xC30.C23φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).140D6480,1114
(C2xDic5).141D6 = Dic3xC5:C8φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).141D6480,244
(C2xDic5).142D6 = C30.M4(2)φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).142D6480,245
(C2xDic5).143D6 = Dic5.22D12φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).143D6480,246
(C2xDic5).144D6 = D30:C8φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).144D6480,247
(C2xDic5).145D6 = C30.4M4(2)φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).145D6480,252
(C2xDic5).146D6 = Dic15:C8φ: D6/S3C2 ⊆ Out C2xDic5480(C2xDic5).146D6480,253
(C2xDic5).147D6 = C2xS3xC5:C8φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).147D6480,1002
(C2xDic5).148D6 = S3xC22.F5φ: D6/S3C2 ⊆ Out C2xDic51208-(C2xDic5).148D6480,1004
(C2xDic5).149D6 = C2xD15:C8φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).149D6480,1006
(C2xDic5).150D6 = D15:2M4(2)φ: D6/S3C2 ⊆ Out C2xDic51208+(C2xDic5).150D6480,1007
(C2xDic5).151D6 = C2xD6.F5φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).151D6480,1008
(C2xDic5).152D6 = C2xDic3.F5φ: D6/S3C2 ⊆ Out C2xDic5240(C2xDic5).152D6480,1009
(C2xDic5).153D6 = Dic5:5Dic6φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).153D6480,399
(C2xDic5).154D6 = Dic5xDic6φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).154D6480,408
(C2xDic5).155D6 = Dic30:17C4φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).155D6480,409
(C2xDic5).156D6 = Dic3:C4:D5φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).156D6480,424
(C2xDic5).157D6 = D10:Dic6φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).157D6480,425
(C2xDic5).158D6 = Dic5.8D12φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).158D6480,426
(C2xDic5).159D6 = (D5xC12):C4φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).159D6480,433
(C2xDic5).160D6 = C60.67D4φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).160D6480,435
(C2xDic5).161D6 = C60.68D4φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).161D6480,436
(C2xDic5).162D6 = (S3xC20):7C4φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).162D6480,447
(C2xDic5).163D6 = C5:(C42:3S3)φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).163D6480,448
(C2xDic5).164D6 = C60.69D4φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).164D6480,449
(C2xDic5).165D6 = C60.70D4φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).165D6480,451
(C2xDic5).166D6 = Dic5:Dic6φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).166D6480,452
(C2xDic5).167D6 = Dic5.7Dic6φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).167D6480,454
(C2xDic5).168D6 = (C4xD15):10C4φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).168D6480,462
(C2xDic5).169D6 = (C4xDic5):S3φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).169D6480,463
(C2xDic5).170D6 = C20.Dic6φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).170D6480,464
(C2xDic5).171D6 = D5xDic3:C4φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).171D6480,468
(C2xDic5).172D6 = D6.(C4xD5)φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).172D6480,474
(C2xDic5).173D6 = D30.C2:C4φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).173D6480,478
(C2xDic5).174D6 = Dic5:4D12φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).174D6480,481
(C2xDic5).175D6 = D5xC4:Dic3φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).175D6480,488
(C2xDic5).176D6 = Dic5xD12φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).176D6480,491
(C2xDic5).177D6 = D60:17C4φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).177D6480,494
(C2xDic5).178D6 = C4xC15:D4φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).178D6480,515
(C2xDic5).179D6 = C4xC3:D20φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).179D6480,519
(C2xDic5).180D6 = C4xC5:D12φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).180D6480,521
(C2xDic5).181D6 = D6:C4:D5φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).181D6480,523
(C2xDic5).182D6 = D10:D12φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).182D6480,524
(C2xDic5).183D6 = C60:D4φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).183D6480,525
(C2xDic5).184D6 = C12:7D20φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).184D6480,526
(C2xDic5).185D6 = C20:D12φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).185D6480,527
(C2xDic5).186D6 = C4xC15:Q8φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).186D6480,543
(C2xDic5).187D6 = C60:Q8φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).187D6480,544
(C2xDic5).188D6 = C30.(C2xD4)φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).188D6480,615
(C2xDic5).189D6 = C2xC30.Q8φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).189D6480,617
(C2xDic5).190D6 = C2xDic15:5C4φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).190D6480,620
(C2xDic5).191D6 = C2xC6.Dic10φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).191D6480,621
(C2xDic5).192D6 = C6.D4:D5φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).192D6480,622
(C2xDic5).193D6 = Dic5xC3:D4φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).193D6480,627
(C2xDic5).194D6 = C15:26(C4xD4)φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).194D6480,628
(C2xDic5).195D6 = (C2xC10):4D12φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).195D6480,642
(C2xDic5).196D6 = (C2xC30):Q8φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).196D6480,650
(C2xDic5).197D6 = C2xD5xDic6φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).197D6480,1073
(C2xDic5).198D6 = C2xD6.D10φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).198D6480,1083
(C2xDic5).199D6 = C22xC15:Q8φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).199D6480,1121
(C2xDic5).200D6 = C4xC15:C8φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).200D6480,305
(C2xDic5).201D6 = C60:C8φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).201D6480,306
(C2xDic5).202D6 = C30.11C42φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).202D6480,307
(C2xDic5).203D6 = C30.7M4(2)φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).203D6480,308
(C2xDic5).204D6 = Dic5.13D12φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).204D6480,309
(C2xDic5).205D6 = C30.22M4(2)φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).205D6480,317
(C2xDic5).206D6 = C2xC60.C4φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).206D6480,1060
(C2xDic5).207D6 = C2xC12.F5φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).207D6480,1061
(C2xDic5).208D6 = C60.59(C2xC4)φ: D6/C6C2 ⊆ Out C2xDic51204(C2xDic5).208D6480,1062
(C2xDic5).209D6 = C22xC15:C8φ: D6/C6C2 ⊆ Out C2xDic5480(C2xDic5).209D6480,1070
(C2xDic5).210D6 = C2xC15:8M4(2)φ: D6/C6C2 ⊆ Out C2xDic5240(C2xDic5).210D6480,1071
(C2xDic5).211D6 = (C4xD5):Dic3φ: trivial image240(C2xDic5).211D6480,434
(C2xDic5).212D6 = C4xD5xDic3φ: trivial image240(C2xDic5).212D6480,467
(C2xDic5).213D6 = C4xS3xDic5φ: trivial image240(C2xDic5).213D6480,473
(C2xDic5).214D6 = C4xD30.C2φ: trivial image240(C2xDic5).214D6480,477
(C2xDic5).215D6 = D6:(C4xD5)φ: trivial image240(C2xDic5).215D6480,516
(C2xDic5).216D6 = C15:20(C4xD4)φ: trivial image240(C2xDic5).216D6480,520
(C2xDic5).217D6 = C2xDic3xDic5φ: trivial image480(C2xDic5).217D6480,603
(C2xDic5).218D6 = (C6xDic5):7C4φ: trivial image240(C2xDic5).218D6480,604
(C2xDic5).219D6 = C2xD12:5D5φ: trivial image240(C2xDic5).219D6480,1084
(C2xDic5).220D6 = C2xC12.28D10φ: trivial image240(C2xDic5).220D6480,1085

׿
x
:
Z
F
o
wr
Q
<