metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D60⋊17C4, Dic5⋊5D12, C5⋊2(C4×D12), C20⋊6(C4×S3), C12⋊7(C4×D5), C15⋊10(C4×D4), C60⋊19(C2×C4), C2.4(D5×D12), C6.19(D4×D5), D30⋊10(C2×C4), C4⋊Dic3⋊17D5, (C3×Dic5)⋊8D4, (C4×Dic5)⋊6S3, C30.43(C2×D4), C3⋊1(D20⋊8C4), C4⋊2(D30.C2), (C12×Dic5)⋊6C2, (C2×D60).19C2, (C2×C20).125D6, C10.19(C2×D12), D30⋊4C4⋊13C2, C30.62(C4○D4), (C2×C12).304D10, C10.11(C4○D12), C2.4(C12.28D10), (C2×C60).148C22, C30.126(C22×C4), (C2×C30).108C23, C6.13(Q8⋊2D5), (C2×Dic5).177D6, (C2×Dic3).102D10, (C6×Dic5).202C22, (C10×Dic3).66C22, (C22×D15).35C22, C6.48(C2×C4×D5), C10.80(S3×C2×C4), (C5×C4⋊Dic3)⋊5C2, C22.54(C2×S3×D5), (C2×D30.C2)⋊4C2, (C2×C4).161(S3×D5), C2.12(C2×D30.C2), (C2×C6).120(C22×D5), (C2×C10).120(C22×S3), SmallGroup(480,494)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D60⋊17C4
G = < a,b,c | a60=b2=c4=1, bab=a-1, cac-1=a11, cbc-1=a10b >
Subgroups: 1132 in 188 conjugacy classes, 64 normal (34 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C2×C4, C2×C4, D4, C23, D5, C10, Dic3, C12, C12, D6, C2×C6, C15, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, Dic5, C20, C20, D10, C2×C10, C4×S3, D12, C2×Dic3, C2×C12, C2×C12, C22×S3, D15, C30, C4×D4, C4×D5, D20, C2×Dic5, C2×C20, C2×C20, C22×D5, C4⋊Dic3, D6⋊C4, C4×C12, S3×C2×C4, C2×D12, C5×Dic3, C3×Dic5, C3×Dic5, C60, D30, D30, C2×C30, C4×Dic5, D10⋊C4, C5×C4⋊C4, C2×C4×D5, C2×D20, C4×D12, D30.C2, C6×Dic5, C10×Dic3, D60, C2×C60, C22×D15, D20⋊8C4, D30⋊4C4, C12×Dic5, C5×C4⋊Dic3, C2×D30.C2, C2×D60, D60⋊17C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D5, D6, C22×C4, C2×D4, C4○D4, D10, C4×S3, D12, C22×S3, C4×D4, C4×D5, C22×D5, S3×C2×C4, C2×D12, C4○D12, S3×D5, C2×C4×D5, D4×D5, Q8⋊2D5, C4×D12, D30.C2, C2×S3×D5, D20⋊8C4, C12.28D10, D5×D12, C2×D30.C2, D60⋊17C4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 202)(2 201)(3 200)(4 199)(5 198)(6 197)(7 196)(8 195)(9 194)(10 193)(11 192)(12 191)(13 190)(14 189)(15 188)(16 187)(17 186)(18 185)(19 184)(20 183)(21 182)(22 181)(23 240)(24 239)(25 238)(26 237)(27 236)(28 235)(29 234)(30 233)(31 232)(32 231)(33 230)(34 229)(35 228)(36 227)(37 226)(38 225)(39 224)(40 223)(41 222)(42 221)(43 220)(44 219)(45 218)(46 217)(47 216)(48 215)(49 214)(50 213)(51 212)(52 211)(53 210)(54 209)(55 208)(56 207)(57 206)(58 205)(59 204)(60 203)(61 131)(62 130)(63 129)(64 128)(65 127)(66 126)(67 125)(68 124)(69 123)(70 122)(71 121)(72 180)(73 179)(74 178)(75 177)(76 176)(77 175)(78 174)(79 173)(80 172)(81 171)(82 170)(83 169)(84 168)(85 167)(86 166)(87 165)(88 164)(89 163)(90 162)(91 161)(92 160)(93 159)(94 158)(95 157)(96 156)(97 155)(98 154)(99 153)(100 152)(101 151)(102 150)(103 149)(104 148)(105 147)(106 146)(107 145)(108 144)(109 143)(110 142)(111 141)(112 140)(113 139)(114 138)(115 137)(116 136)(117 135)(118 134)(119 133)(120 132)
(1 84 188 124)(2 95 189 135)(3 106 190 146)(4 117 191 157)(5 68 192 168)(6 79 193 179)(7 90 194 130)(8 101 195 141)(9 112 196 152)(10 63 197 163)(11 74 198 174)(12 85 199 125)(13 96 200 136)(14 107 201 147)(15 118 202 158)(16 69 203 169)(17 80 204 180)(18 91 205 131)(19 102 206 142)(20 113 207 153)(21 64 208 164)(22 75 209 175)(23 86 210 126)(24 97 211 137)(25 108 212 148)(26 119 213 159)(27 70 214 170)(28 81 215 121)(29 92 216 132)(30 103 217 143)(31 114 218 154)(32 65 219 165)(33 76 220 176)(34 87 221 127)(35 98 222 138)(36 109 223 149)(37 120 224 160)(38 71 225 171)(39 82 226 122)(40 93 227 133)(41 104 228 144)(42 115 229 155)(43 66 230 166)(44 77 231 177)(45 88 232 128)(46 99 233 139)(47 110 234 150)(48 61 235 161)(49 72 236 172)(50 83 237 123)(51 94 238 134)(52 105 239 145)(53 116 240 156)(54 67 181 167)(55 78 182 178)(56 89 183 129)(57 100 184 140)(58 111 185 151)(59 62 186 162)(60 73 187 173)
G:=sub<Sym(240)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,202)(2,201)(3,200)(4,199)(5,198)(6,197)(7,196)(8,195)(9,194)(10,193)(11,192)(12,191)(13,190)(14,189)(15,188)(16,187)(17,186)(18,185)(19,184)(20,183)(21,182)(22,181)(23,240)(24,239)(25,238)(26,237)(27,236)(28,235)(29,234)(30,233)(31,232)(32,231)(33,230)(34,229)(35,228)(36,227)(37,226)(38,225)(39,224)(40,223)(41,222)(42,221)(43,220)(44,219)(45,218)(46,217)(47,216)(48,215)(49,214)(50,213)(51,212)(52,211)(53,210)(54,209)(55,208)(56,207)(57,206)(58,205)(59,204)(60,203)(61,131)(62,130)(63,129)(64,128)(65,127)(66,126)(67,125)(68,124)(69,123)(70,122)(71,121)(72,180)(73,179)(74,178)(75,177)(76,176)(77,175)(78,174)(79,173)(80,172)(81,171)(82,170)(83,169)(84,168)(85,167)(86,166)(87,165)(88,164)(89,163)(90,162)(91,161)(92,160)(93,159)(94,158)(95,157)(96,156)(97,155)(98,154)(99,153)(100,152)(101,151)(102,150)(103,149)(104,148)(105,147)(106,146)(107,145)(108,144)(109,143)(110,142)(111,141)(112,140)(113,139)(114,138)(115,137)(116,136)(117,135)(118,134)(119,133)(120,132), (1,84,188,124)(2,95,189,135)(3,106,190,146)(4,117,191,157)(5,68,192,168)(6,79,193,179)(7,90,194,130)(8,101,195,141)(9,112,196,152)(10,63,197,163)(11,74,198,174)(12,85,199,125)(13,96,200,136)(14,107,201,147)(15,118,202,158)(16,69,203,169)(17,80,204,180)(18,91,205,131)(19,102,206,142)(20,113,207,153)(21,64,208,164)(22,75,209,175)(23,86,210,126)(24,97,211,137)(25,108,212,148)(26,119,213,159)(27,70,214,170)(28,81,215,121)(29,92,216,132)(30,103,217,143)(31,114,218,154)(32,65,219,165)(33,76,220,176)(34,87,221,127)(35,98,222,138)(36,109,223,149)(37,120,224,160)(38,71,225,171)(39,82,226,122)(40,93,227,133)(41,104,228,144)(42,115,229,155)(43,66,230,166)(44,77,231,177)(45,88,232,128)(46,99,233,139)(47,110,234,150)(48,61,235,161)(49,72,236,172)(50,83,237,123)(51,94,238,134)(52,105,239,145)(53,116,240,156)(54,67,181,167)(55,78,182,178)(56,89,183,129)(57,100,184,140)(58,111,185,151)(59,62,186,162)(60,73,187,173)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,202)(2,201)(3,200)(4,199)(5,198)(6,197)(7,196)(8,195)(9,194)(10,193)(11,192)(12,191)(13,190)(14,189)(15,188)(16,187)(17,186)(18,185)(19,184)(20,183)(21,182)(22,181)(23,240)(24,239)(25,238)(26,237)(27,236)(28,235)(29,234)(30,233)(31,232)(32,231)(33,230)(34,229)(35,228)(36,227)(37,226)(38,225)(39,224)(40,223)(41,222)(42,221)(43,220)(44,219)(45,218)(46,217)(47,216)(48,215)(49,214)(50,213)(51,212)(52,211)(53,210)(54,209)(55,208)(56,207)(57,206)(58,205)(59,204)(60,203)(61,131)(62,130)(63,129)(64,128)(65,127)(66,126)(67,125)(68,124)(69,123)(70,122)(71,121)(72,180)(73,179)(74,178)(75,177)(76,176)(77,175)(78,174)(79,173)(80,172)(81,171)(82,170)(83,169)(84,168)(85,167)(86,166)(87,165)(88,164)(89,163)(90,162)(91,161)(92,160)(93,159)(94,158)(95,157)(96,156)(97,155)(98,154)(99,153)(100,152)(101,151)(102,150)(103,149)(104,148)(105,147)(106,146)(107,145)(108,144)(109,143)(110,142)(111,141)(112,140)(113,139)(114,138)(115,137)(116,136)(117,135)(118,134)(119,133)(120,132), (1,84,188,124)(2,95,189,135)(3,106,190,146)(4,117,191,157)(5,68,192,168)(6,79,193,179)(7,90,194,130)(8,101,195,141)(9,112,196,152)(10,63,197,163)(11,74,198,174)(12,85,199,125)(13,96,200,136)(14,107,201,147)(15,118,202,158)(16,69,203,169)(17,80,204,180)(18,91,205,131)(19,102,206,142)(20,113,207,153)(21,64,208,164)(22,75,209,175)(23,86,210,126)(24,97,211,137)(25,108,212,148)(26,119,213,159)(27,70,214,170)(28,81,215,121)(29,92,216,132)(30,103,217,143)(31,114,218,154)(32,65,219,165)(33,76,220,176)(34,87,221,127)(35,98,222,138)(36,109,223,149)(37,120,224,160)(38,71,225,171)(39,82,226,122)(40,93,227,133)(41,104,228,144)(42,115,229,155)(43,66,230,166)(44,77,231,177)(45,88,232,128)(46,99,233,139)(47,110,234,150)(48,61,235,161)(49,72,236,172)(50,83,237,123)(51,94,238,134)(52,105,239,145)(53,116,240,156)(54,67,181,167)(55,78,182,178)(56,89,183,129)(57,100,184,140)(58,111,185,151)(59,62,186,162)(60,73,187,173) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,202),(2,201),(3,200),(4,199),(5,198),(6,197),(7,196),(8,195),(9,194),(10,193),(11,192),(12,191),(13,190),(14,189),(15,188),(16,187),(17,186),(18,185),(19,184),(20,183),(21,182),(22,181),(23,240),(24,239),(25,238),(26,237),(27,236),(28,235),(29,234),(30,233),(31,232),(32,231),(33,230),(34,229),(35,228),(36,227),(37,226),(38,225),(39,224),(40,223),(41,222),(42,221),(43,220),(44,219),(45,218),(46,217),(47,216),(48,215),(49,214),(50,213),(51,212),(52,211),(53,210),(54,209),(55,208),(56,207),(57,206),(58,205),(59,204),(60,203),(61,131),(62,130),(63,129),(64,128),(65,127),(66,126),(67,125),(68,124),(69,123),(70,122),(71,121),(72,180),(73,179),(74,178),(75,177),(76,176),(77,175),(78,174),(79,173),(80,172),(81,171),(82,170),(83,169),(84,168),(85,167),(86,166),(87,165),(88,164),(89,163),(90,162),(91,161),(92,160),(93,159),(94,158),(95,157),(96,156),(97,155),(98,154),(99,153),(100,152),(101,151),(102,150),(103,149),(104,148),(105,147),(106,146),(107,145),(108,144),(109,143),(110,142),(111,141),(112,140),(113,139),(114,138),(115,137),(116,136),(117,135),(118,134),(119,133),(120,132)], [(1,84,188,124),(2,95,189,135),(3,106,190,146),(4,117,191,157),(5,68,192,168),(6,79,193,179),(7,90,194,130),(8,101,195,141),(9,112,196,152),(10,63,197,163),(11,74,198,174),(12,85,199,125),(13,96,200,136),(14,107,201,147),(15,118,202,158),(16,69,203,169),(17,80,204,180),(18,91,205,131),(19,102,206,142),(20,113,207,153),(21,64,208,164),(22,75,209,175),(23,86,210,126),(24,97,211,137),(25,108,212,148),(26,119,213,159),(27,70,214,170),(28,81,215,121),(29,92,216,132),(30,103,217,143),(31,114,218,154),(32,65,219,165),(33,76,220,176),(34,87,221,127),(35,98,222,138),(36,109,223,149),(37,120,224,160),(38,71,225,171),(39,82,226,122),(40,93,227,133),(41,104,228,144),(42,115,229,155),(43,66,230,166),(44,77,231,177),(45,88,232,128),(46,99,233,139),(47,110,234,150),(48,61,235,161),(49,72,236,172),(50,83,237,123),(51,94,238,134),(52,105,239,145),(53,116,240,156),(54,67,181,167),(55,78,182,178),(56,89,183,129),(57,100,184,140),(58,111,185,151),(59,62,186,162),(60,73,187,173)]])
72 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 5A | 5B | 6A | 6B | 6C | 10A | ··· | 10F | 12A | 12B | 12C | 12D | 12E | ··· | 12L | 15A | 15B | 20A | 20B | 20C | 20D | 20E | ··· | 20L | 30A | ··· | 30F | 60A | ··· | 60H |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 10 | ··· | 10 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 15 | 15 | 20 | 20 | 20 | 20 | 20 | ··· | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
| size | 1 | 1 | 1 | 1 | 30 | 30 | 30 | 30 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 10 | 10 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 10 | ··· | 10 | 4 | 4 | 4 | 4 | 4 | 4 | 12 | ··· | 12 | 4 | ··· | 4 | 4 | ··· | 4 |
72 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | S3 | D4 | D5 | D6 | D6 | C4○D4 | D10 | D10 | D12 | C4×S3 | C4×D5 | C4○D12 | S3×D5 | D4×D5 | Q8⋊2D5 | D30.C2 | C2×S3×D5 | C12.28D10 | D5×D12 |
| kernel | D60⋊17C4 | D30⋊4C4 | C12×Dic5 | C5×C4⋊Dic3 | C2×D30.C2 | C2×D60 | D60 | C4×Dic5 | C3×Dic5 | C4⋊Dic3 | C2×Dic5 | C2×C20 | C30 | C2×Dic3 | C2×C12 | Dic5 | C20 | C12 | C10 | C2×C4 | C6 | C6 | C4 | C22 | C2 | C2 |
| # reps | 1 | 2 | 1 | 1 | 2 | 1 | 8 | 1 | 2 | 2 | 2 | 1 | 2 | 4 | 2 | 4 | 4 | 8 | 4 | 2 | 2 | 2 | 4 | 2 | 4 | 4 |
Matrix representation of D60⋊17C4 ►in GL5(𝔽61)
| 1 | 0 | 0 | 0 | 0 |
| 0 | 38 | 23 | 0 | 0 |
| 0 | 38 | 15 | 0 | 0 |
| 0 | 0 | 0 | 44 | 18 |
| 0 | 0 | 0 | 44 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 60 | 60 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 60 |
| 0 | 0 | 0 | 0 | 60 |
| 11 | 0 | 0 | 0 | 0 |
| 0 | 52 | 43 | 0 | 0 |
| 0 | 52 | 9 | 0 | 0 |
| 0 | 0 | 0 | 60 | 0 |
| 0 | 0 | 0 | 0 | 60 |
G:=sub<GL(5,GF(61))| [1,0,0,0,0,0,38,38,0,0,0,23,15,0,0,0,0,0,44,44,0,0,0,18,0],[1,0,0,0,0,0,60,0,0,0,0,60,1,0,0,0,0,0,1,0,0,0,0,60,60],[11,0,0,0,0,0,52,52,0,0,0,43,9,0,0,0,0,0,60,0,0,0,0,0,60] >;
D60⋊17C4 in GAP, Magma, Sage, TeX
D_{60}\rtimes_{17}C_4 % in TeX
G:=Group("D60:17C4"); // GroupNames label
G:=SmallGroup(480,494);
// by ID
G=gap.SmallGroup(480,494);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,64,219,100,1356,18822]);
// Polycyclic
G:=Group<a,b,c|a^60=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^11,c*b*c^-1=a^10*b>;
// generators/relations