Extensions 1→N→G→Q→1 with N=C5×Q8 and Q=Dic3

Direct product G=N×Q with N=C5×Q8 and Q=Dic3
dρLabelID
C5×Q8×Dic3480C5xQ8xDic3480,824

Semidirect products G=N:Q with N=C5×Q8 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C5×Q8)⋊Dic3 = D10.S4φ: Dic3/C1Dic3 ⊆ Out C5×Q8408-(C5xQ8):Dic3480,962
(C5×Q8)⋊2Dic3 = Q8⋊Dic15φ: Dic3/C2S3 ⊆ Out C5×Q8160(C5xQ8):2Dic3480,260
(C5×Q8)⋊3Dic3 = C5×Q8⋊Dic3φ: Dic3/C2S3 ⊆ Out C5×Q8160(C5xQ8):3Dic3480,256
(C5×Q8)⋊4Dic3 = Dic102Dic3φ: Dic3/C3C4 ⊆ Out C5×Q81208(C5xQ8):4Dic3480,314
(C5×Q8)⋊5Dic3 = D202Dic3φ: Dic3/C3C4 ⊆ Out C5×Q81208(C5xQ8):5Dic3480,315
(C5×Q8)⋊6Dic3 = Q8×C3⋊F5φ: Dic3/C3C4 ⊆ Out C5×Q81208(C5xQ8):6Dic3480,1069
(C5×Q8)⋊7Dic3 = Q82Dic15φ: Dic3/C6C2 ⊆ Out C5×Q8480(C5xQ8):7Dic3480,195
(C5×Q8)⋊8Dic3 = Q83Dic15φ: Dic3/C6C2 ⊆ Out C5×Q81204(C5xQ8):8Dic3480,197
(C5×Q8)⋊9Dic3 = Q8×Dic15φ: Dic3/C6C2 ⊆ Out C5×Q8480(C5xQ8):9Dic3480,910
(C5×Q8)⋊10Dic3 = C5×Q82Dic3φ: Dic3/C6C2 ⊆ Out C5×Q8480(C5xQ8):10Dic3480,154
(C5×Q8)⋊11Dic3 = C5×Q83Dic3φ: Dic3/C6C2 ⊆ Out C5×Q81204(C5xQ8):11Dic3480,156

Non-split extensions G=N.Q with N=C5×Q8 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C5×Q8).Dic3 = C5⋊U2(𝔽3)φ: Dic3/C1Dic3 ⊆ Out C5×Q81208+(C5xQ8).Dic3480,961
(C5×Q8).2Dic3 = C52U2(𝔽3)φ: Dic3/C2S3 ⊆ Out C5×Q81204(C5xQ8).2Dic3480,261
(C5×Q8).3Dic3 = C5×U2(𝔽3)φ: Dic3/C2S3 ⊆ Out C5×Q81202(C5xQ8).3Dic3480,257
(C5×Q8).4Dic3 = D20.Dic3φ: Dic3/C3C4 ⊆ Out C5×Q82408(C5xQ8).4Dic3480,1068
(C5×Q8).5Dic3 = D4.Dic15φ: Dic3/C6C2 ⊆ Out C5×Q82404(C5xQ8).5Dic3480,913
(C5×Q8).6Dic3 = C5×D4.Dic3φ: trivial image2404(C5xQ8).6Dic3480,827

׿
×
𝔽