Copied to
clipboard

G = C52U2(𝔽3)  order 480 = 25·3·5

The semidirect product of C5 and U2(𝔽3) acting via U2(𝔽3)/C4.A4=C2

non-abelian, soluble

Aliases: C20.5S4, C52U2(𝔽3), Q8.Dic15, SL2(𝔽3)⋊2Dic5, C4.5(C5⋊S4), C4.A4.2D5, C4○D4.1D15, C10.6(A4⋊C4), (C5×Q8).2Dic3, C2.3(A4⋊Dic5), (C5×SL2(𝔽3))⋊5C4, (C5×C4.A4).2C2, (C5×C4○D4).1S3, SmallGroup(480,261)

Series: Derived Chief Lower central Upper central

C1C2Q8C5×SL2(𝔽3) — C52U2(𝔽3)
C1C2Q8C5×Q8C5×SL2(𝔽3)C5×C4.A4 — C52U2(𝔽3)
C5×SL2(𝔽3) — C52U2(𝔽3)
C1C4

Generators and relations for C52U2(𝔽3)
 G = < a,b,c,d,e,f | a5=b4=e3=1, c2=d2=b2, f2=b, ab=ba, ac=ca, ad=da, ae=ea, faf-1=a-1, bc=cb, bd=db, be=eb, bf=fb, dcd-1=b2c, ece-1=b2cd, fcf-1=cd, ede-1=c, fdf-1=b2d, fef-1=e-1 >

6C2
4C3
3C22
3C4
30C4
30C4
4C6
6C10
4C15
3C2×C4
3D4
30C8
30C2×C4
4C12
3C2×C10
3C20
6Dic5
6Dic5
4C30
15M4(2)
15C42
20C3⋊C8
3C5×D4
3C2×C20
6C2×Dic5
6C52C8
4C60
15C4≀C2
3C4×Dic5
3C4.Dic5
4C153C8
5U2(𝔽3)
3D42Dic5

Smallest permutation representation of C52U2(𝔽3)
On 120 points
Generators in S120
(1 38 10 30 18)(2 19 31 11 39)(3 40 12 32 20)(4 21 25 13 33)(5 34 14 26 22)(6 23 27 15 35)(7 36 16 28 24)(8 17 29 9 37)(41 85 73 93 65)(42 66 94 74 86)(43 87 75 95 67)(44 68 96 76 88)(45 81 77 89 69)(46 70 90 78 82)(47 83 79 91 71)(48 72 92 80 84)(49 117 101 57 109)(50 110 58 102 118)(51 119 103 59 111)(52 112 60 104 120)(53 113 97 61 105)(54 106 62 98 114)(55 115 99 63 107)(56 108 64 100 116)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)(65 67 69 71)(66 68 70 72)(73 75 77 79)(74 76 78 80)(81 83 85 87)(82 84 86 88)(89 91 93 95)(90 92 94 96)(97 99 101 103)(98 100 102 104)(105 107 109 111)(106 108 110 112)(113 115 117 119)(114 116 118 120)
(1 4 5 8)(2 3 6 7)(9 30 13 26)(10 25 14 29)(11 32 15 28)(12 27 16 31)(17 38 21 34)(18 33 22 37)(19 40 23 36)(20 35 24 39)(41 100 45 104)(42 44 46 48)(43 102 47 98)(49 55 53 51)(50 79 54 75)(52 73 56 77)(57 63 61 59)(58 71 62 67)(60 65 64 69)(66 68 70 72)(74 76 78 80)(81 120 85 116)(82 84 86 88)(83 114 87 118)(89 112 93 108)(90 92 94 96)(91 106 95 110)(97 103 101 99)(105 111 109 107)(113 119 117 115)
(1 3 5 7)(2 8 6 4)(9 15 13 11)(10 12 14 16)(17 23 21 19)(18 20 22 24)(25 31 29 27)(26 28 30 32)(33 39 37 35)(34 36 38 40)(41 102 45 98)(42 99 46 103)(43 104 47 100)(44 101 48 97)(49 80 53 76)(50 77 54 73)(51 74 55 78)(52 79 56 75)(57 72 61 68)(58 69 62 65)(59 66 63 70)(60 71 64 67)(81 114 85 118)(82 119 86 115)(83 116 87 120)(84 113 88 117)(89 106 93 110)(90 111 94 107)(91 108 95 112)(92 105 96 109)
(1 102 42)(2 43 103)(3 104 44)(4 45 97)(5 98 46)(6 47 99)(7 100 48)(8 41 101)(9 93 49)(10 50 94)(11 95 51)(12 52 96)(13 89 53)(14 54 90)(15 91 55)(16 56 92)(17 85 57)(18 58 86)(19 87 59)(20 60 88)(21 81 61)(22 62 82)(23 83 63)(24 64 84)(25 77 105)(26 106 78)(27 79 107)(28 108 80)(29 73 109)(30 110 74)(31 75 111)(32 112 76)(33 69 113)(34 114 70)(35 71 115)(36 116 72)(37 65 117)(38 118 66)(39 67 119)(40 120 68)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,38,10,30,18)(2,19,31,11,39)(3,40,12,32,20)(4,21,25,13,33)(5,34,14,26,22)(6,23,27,15,35)(7,36,16,28,24)(8,17,29,9,37)(41,85,73,93,65)(42,66,94,74,86)(43,87,75,95,67)(44,68,96,76,88)(45,81,77,89,69)(46,70,90,78,82)(47,83,79,91,71)(48,72,92,80,84)(49,117,101,57,109)(50,110,58,102,118)(51,119,103,59,111)(52,112,60,104,120)(53,113,97,61,105)(54,106,62,98,114)(55,115,99,63,107)(56,108,64,100,116), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96)(97,99,101,103)(98,100,102,104)(105,107,109,111)(106,108,110,112)(113,115,117,119)(114,116,118,120), (1,4,5,8)(2,3,6,7)(9,30,13,26)(10,25,14,29)(11,32,15,28)(12,27,16,31)(17,38,21,34)(18,33,22,37)(19,40,23,36)(20,35,24,39)(41,100,45,104)(42,44,46,48)(43,102,47,98)(49,55,53,51)(50,79,54,75)(52,73,56,77)(57,63,61,59)(58,71,62,67)(60,65,64,69)(66,68,70,72)(74,76,78,80)(81,120,85,116)(82,84,86,88)(83,114,87,118)(89,112,93,108)(90,92,94,96)(91,106,95,110)(97,103,101,99)(105,111,109,107)(113,119,117,115), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,23,21,19)(18,20,22,24)(25,31,29,27)(26,28,30,32)(33,39,37,35)(34,36,38,40)(41,102,45,98)(42,99,46,103)(43,104,47,100)(44,101,48,97)(49,80,53,76)(50,77,54,73)(51,74,55,78)(52,79,56,75)(57,72,61,68)(58,69,62,65)(59,66,63,70)(60,71,64,67)(81,114,85,118)(82,119,86,115)(83,116,87,120)(84,113,88,117)(89,106,93,110)(90,111,94,107)(91,108,95,112)(92,105,96,109), (1,102,42)(2,43,103)(3,104,44)(4,45,97)(5,98,46)(6,47,99)(7,100,48)(8,41,101)(9,93,49)(10,50,94)(11,95,51)(12,52,96)(13,89,53)(14,54,90)(15,91,55)(16,56,92)(17,85,57)(18,58,86)(19,87,59)(20,60,88)(21,81,61)(22,62,82)(23,83,63)(24,64,84)(25,77,105)(26,106,78)(27,79,107)(28,108,80)(29,73,109)(30,110,74)(31,75,111)(32,112,76)(33,69,113)(34,114,70)(35,71,115)(36,116,72)(37,65,117)(38,118,66)(39,67,119)(40,120,68), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,38,10,30,18)(2,19,31,11,39)(3,40,12,32,20)(4,21,25,13,33)(5,34,14,26,22)(6,23,27,15,35)(7,36,16,28,24)(8,17,29,9,37)(41,85,73,93,65)(42,66,94,74,86)(43,87,75,95,67)(44,68,96,76,88)(45,81,77,89,69)(46,70,90,78,82)(47,83,79,91,71)(48,72,92,80,84)(49,117,101,57,109)(50,110,58,102,118)(51,119,103,59,111)(52,112,60,104,120)(53,113,97,61,105)(54,106,62,98,114)(55,115,99,63,107)(56,108,64,100,116), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96)(97,99,101,103)(98,100,102,104)(105,107,109,111)(106,108,110,112)(113,115,117,119)(114,116,118,120), (1,4,5,8)(2,3,6,7)(9,30,13,26)(10,25,14,29)(11,32,15,28)(12,27,16,31)(17,38,21,34)(18,33,22,37)(19,40,23,36)(20,35,24,39)(41,100,45,104)(42,44,46,48)(43,102,47,98)(49,55,53,51)(50,79,54,75)(52,73,56,77)(57,63,61,59)(58,71,62,67)(60,65,64,69)(66,68,70,72)(74,76,78,80)(81,120,85,116)(82,84,86,88)(83,114,87,118)(89,112,93,108)(90,92,94,96)(91,106,95,110)(97,103,101,99)(105,111,109,107)(113,119,117,115), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,23,21,19)(18,20,22,24)(25,31,29,27)(26,28,30,32)(33,39,37,35)(34,36,38,40)(41,102,45,98)(42,99,46,103)(43,104,47,100)(44,101,48,97)(49,80,53,76)(50,77,54,73)(51,74,55,78)(52,79,56,75)(57,72,61,68)(58,69,62,65)(59,66,63,70)(60,71,64,67)(81,114,85,118)(82,119,86,115)(83,116,87,120)(84,113,88,117)(89,106,93,110)(90,111,94,107)(91,108,95,112)(92,105,96,109), (1,102,42)(2,43,103)(3,104,44)(4,45,97)(5,98,46)(6,47,99)(7,100,48)(8,41,101)(9,93,49)(10,50,94)(11,95,51)(12,52,96)(13,89,53)(14,54,90)(15,91,55)(16,56,92)(17,85,57)(18,58,86)(19,87,59)(20,60,88)(21,81,61)(22,62,82)(23,83,63)(24,64,84)(25,77,105)(26,106,78)(27,79,107)(28,108,80)(29,73,109)(30,110,74)(31,75,111)(32,112,76)(33,69,113)(34,114,70)(35,71,115)(36,116,72)(37,65,117)(38,118,66)(39,67,119)(40,120,68), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,38,10,30,18),(2,19,31,11,39),(3,40,12,32,20),(4,21,25,13,33),(5,34,14,26,22),(6,23,27,15,35),(7,36,16,28,24),(8,17,29,9,37),(41,85,73,93,65),(42,66,94,74,86),(43,87,75,95,67),(44,68,96,76,88),(45,81,77,89,69),(46,70,90,78,82),(47,83,79,91,71),(48,72,92,80,84),(49,117,101,57,109),(50,110,58,102,118),(51,119,103,59,111),(52,112,60,104,120),(53,113,97,61,105),(54,106,62,98,114),(55,115,99,63,107),(56,108,64,100,116)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64),(65,67,69,71),(66,68,70,72),(73,75,77,79),(74,76,78,80),(81,83,85,87),(82,84,86,88),(89,91,93,95),(90,92,94,96),(97,99,101,103),(98,100,102,104),(105,107,109,111),(106,108,110,112),(113,115,117,119),(114,116,118,120)], [(1,4,5,8),(2,3,6,7),(9,30,13,26),(10,25,14,29),(11,32,15,28),(12,27,16,31),(17,38,21,34),(18,33,22,37),(19,40,23,36),(20,35,24,39),(41,100,45,104),(42,44,46,48),(43,102,47,98),(49,55,53,51),(50,79,54,75),(52,73,56,77),(57,63,61,59),(58,71,62,67),(60,65,64,69),(66,68,70,72),(74,76,78,80),(81,120,85,116),(82,84,86,88),(83,114,87,118),(89,112,93,108),(90,92,94,96),(91,106,95,110),(97,103,101,99),(105,111,109,107),(113,119,117,115)], [(1,3,5,7),(2,8,6,4),(9,15,13,11),(10,12,14,16),(17,23,21,19),(18,20,22,24),(25,31,29,27),(26,28,30,32),(33,39,37,35),(34,36,38,40),(41,102,45,98),(42,99,46,103),(43,104,47,100),(44,101,48,97),(49,80,53,76),(50,77,54,73),(51,74,55,78),(52,79,56,75),(57,72,61,68),(58,69,62,65),(59,66,63,70),(60,71,64,67),(81,114,85,118),(82,119,86,115),(83,116,87,120),(84,113,88,117),(89,106,93,110),(90,111,94,107),(91,108,95,112),(92,105,96,109)], [(1,102,42),(2,43,103),(3,104,44),(4,45,97),(5,98,46),(6,47,99),(7,100,48),(8,41,101),(9,93,49),(10,50,94),(11,95,51),(12,52,96),(13,89,53),(14,54,90),(15,91,55),(16,56,92),(17,85,57),(18,58,86),(19,87,59),(20,60,88),(21,81,61),(22,62,82),(23,83,63),(24,64,84),(25,77,105),(26,106,78),(27,79,107),(28,108,80),(29,73,109),(30,110,74),(31,75,111),(32,112,76),(33,69,113),(34,114,70),(35,71,115),(36,116,72),(37,65,117),(38,118,66),(39,67,119),(40,120,68)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

44 conjugacy classes

class 1 2A2B 3 4A4B4C4D4E4F4G5A5B 6 8A8B10A10B10C10D12A12B15A15B15C15D20A20B20C20D20E20F30A30B30C30D60A···60H
order1223444444455688101010101212151515152020202020203030303060···60
size11681163030303022860602212128888882222121288888···8

44 irreducible representations

dim1112222222334466
type++++--+-++-
imageC1C2C4S3D5Dic3Dic5D15Dic15U2(𝔽3)S4A4⋊C4U2(𝔽3)C52U2(𝔽3)C5⋊S4A4⋊Dic5
kernelC52U2(𝔽3)C5×C4.A4C5×SL2(𝔽3)C5×C4○D4C4.A4C5×Q8SL2(𝔽3)C4○D4Q8C5C20C10C5C1C4C2
# reps11212124442221222

Matrix representation of C52U2(𝔽3) in GL4(𝔽241) generated by

0100
2405100
0010
0001
,
1000
0100
00640
00064
,
1000
0100
000177
001770
,
1000
0100
0001
002400
,
1000
0100
0088152
00153152
,
1000
5124000
008888
0088153
G:=sub<GL(4,GF(241))| [0,240,0,0,1,51,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,64,0,0,0,0,64],[1,0,0,0,0,1,0,0,0,0,0,177,0,0,177,0],[1,0,0,0,0,1,0,0,0,0,0,240,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,88,153,0,0,152,152],[1,51,0,0,0,240,0,0,0,0,88,88,0,0,88,153] >;

C52U2(𝔽3) in GAP, Magma, Sage, TeX

C_5\rtimes_2{\rm U}_2({\mathbb F}_3)
% in TeX

G:=Group("C5:2U(2,3)");
// GroupNames label

G:=SmallGroup(480,261);
// by ID

G=gap.SmallGroup(480,261);
# by ID

G:=PCGroup([7,-2,-2,-3,-5,-2,2,-2,14,1688,170,1347,4204,3168,172,2525,1909,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^5=b^4=e^3=1,c^2=d^2=b^2,f^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f^-1=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=b^2*c,e*c*e^-1=b^2*c*d,f*c*f^-1=c*d,e*d*e^-1=c,f*d*f^-1=b^2*d,f*e*f^-1=e^-1>;
// generators/relations

Export

Subgroup lattice of C52U2(𝔽3) in TeX

׿
×
𝔽