Copied to
clipboard

G = C5⋊U2(𝔽3)  order 480 = 25·3·5

The semidirect product of C5 and U2(𝔽3) acting via U2(𝔽3)/SL2(𝔽3)=C4

non-abelian, soluble

Aliases: C5⋊U2(𝔽3), Dic5.4S4, SL2(𝔽3)⋊1F5, Q8.(C3⋊F5), (C5×Q8).Dic3, C2.2(A4⋊F5), C10.1(A4⋊C4), Q82D5.2S3, Dic5.A4.2C2, (C5×SL2(𝔽3))⋊1C4, SmallGroup(480,961)

Series: Derived Chief Lower central Upper central

C1C2Q8C5×SL2(𝔽3) — C5⋊U2(𝔽3)
C1C2Q8C5×Q8C5×SL2(𝔽3)Dic5.A4 — C5⋊U2(𝔽3)
C5×SL2(𝔽3) — C5⋊U2(𝔽3)
C1C2

Generators and relations for C5⋊U2(𝔽3)
 G = < a,b,c,d,e,f | a5=b4=e3=1, c2=d2=b2, f2=b, bab-1=a-1, ac=ca, ad=da, ae=ea, faf-1=a2, bc=cb, bd=db, be=eb, bf=fb, dcd-1=b2c, ece-1=b2cd, fcf-1=cd, ede-1=c, fdf-1=b2d, fef-1=e-1 >

30C2
4C3
3C4
5C4
15C22
30C4
30C4
4C6
6D5
4C15
15C2×C4
15D4
30C8
30C2×C4
20C12
3D10
3C20
6F5
6F5
4C30
5C4○D4
15M4(2)
15C42
20C3⋊C8
3D20
3C4×D5
6C2×F5
6C5⋊C8
4C3×Dic5
15C4≀C2
5C4.A4
3C4×F5
3C4.F5
4C15⋊C8
5U2(𝔽3)
3Q82F5

Character table of C5⋊U2(𝔽3)

 class 12A2B34A4B4C4D4E4F4G568A8B1012A12B15A15B2030A30B
 size 1130855630303030486060440401616241616
ρ111111111111111111111111    trivial
ρ21111111-1-1-1-111-1-111111111    linear of order 2
ρ311-11-1-11-ii-ii11-ii1-1-111111    linear of order 4
ρ411-11-1-11i-ii-i11i-i1-1-111111    linear of order 4
ρ5222-122200002-1002-1-1-1-12-1-1    orthogonal lifted from S3
ρ622-2-1-2-2200002-100211-1-12-1-1    symplectic lifted from Dic3, Schur index 2
ρ72-20-1-2i2i01-i1+i-1+i-1-i2100-2-ii-1-1011    complex lifted from U2(𝔽3)
ρ82-20-12i-2i0-1-i-1+i1+i1-i2100-2i-i-1-1011    complex lifted from U2(𝔽3)
ρ92-20-12i-2i01+i1-i-1-i-1+i2100-2i-i-1-1011    complex lifted from U2(𝔽3)
ρ102-20-1-2i2i0-1+i-1-i1-i1+i2100-2-ii-1-1011    complex lifted from U2(𝔽3)
ρ1133-1033-1111130-1-130000-100    orthogonal lifted from S4
ρ1233-1033-1-1-1-1-1301130000-100    orthogonal lifted from S4
ρ133310-3-3-1-ii-ii30i-i30000-100    complex lifted from A4⋊C4
ρ143310-3-3-1i-ii-i30-ii30000-100    complex lifted from A4⋊C4
ρ1544040040000-1400-100-1-1-1-1-1    orthogonal lifted from F5
ρ164-401-4i4i000004-100-4i-i110-1-1    complex lifted from U2(𝔽3)
ρ174-4014i-4i000004-100-4-ii110-1-1    complex lifted from U2(𝔽3)
ρ18440-20040000-1-200-1001--15/21+-15/2-11+-15/21--15/2    complex lifted from C3⋊F5
ρ19440-20040000-1-200-1001+-15/21--15/2-11--15/21+-15/2    complex lifted from C3⋊F5
ρ208-80-40000000-2400200110-1-1    orthogonal faithful
ρ218-8020000000-2-200200-1--15/2-1+-15/201--15/21+-15/2    complex faithful
ρ228-8020000000-2-200200-1+-15/2-1--15/201+-15/21--15/2    complex faithful
ρ2312120000-40000-3000-30000100    orthogonal lifted from A4⋊F5

Smallest permutation representation of C5⋊U2(𝔽3)
On 120 points
Generators in S120
(1 16 28 18 38)(2 29 39 9 19)(3 40 20 30 10)(4 21 11 33 31)(5 12 32 22 34)(6 25 35 13 23)(7 36 24 26 14)(8 17 15 37 27)(41 51 85 73 103)(42 86 104 52 74)(43 97 75 87 53)(44 76 54 98 88)(45 55 81 77 99)(46 82 100 56 78)(47 101 79 83 49)(48 80 50 102 84)(57 95 117 67 109)(58 118 110 96 68)(59 111 69 119 89)(60 70 90 112 120)(61 91 113 71 105)(62 114 106 92 72)(63 107 65 115 93)(64 66 94 108 116)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)(65 67 69 71)(66 68 70 72)(73 75 77 79)(74 76 78 80)(81 83 85 87)(82 84 86 88)(89 91 93 95)(90 92 94 96)(97 99 101 103)(98 100 102 104)(105 107 109 111)(106 108 110 112)(113 115 117 119)(114 116 118 120)
(1 4 5 8)(2 3 6 7)(9 30 13 26)(10 23 14 19)(11 32 15 28)(12 17 16 21)(18 33 22 37)(20 35 24 39)(25 36 29 40)(27 38 31 34)(41 108 45 112)(42 44 46 48)(43 110 47 106)(49 114 53 118)(50 104 54 100)(51 116 55 120)(52 98 56 102)(57 65 61 69)(58 83 62 87)(59 67 63 71)(60 85 64 81)(66 77 70 73)(68 79 72 75)(74 88 78 84)(76 82 80 86)(89 117 93 113)(90 103 94 99)(91 119 95 115)(92 97 96 101)(105 111 109 107)
(1 3 5 7)(2 8 6 4)(9 37 13 33)(10 34 14 38)(11 39 15 35)(12 36 16 40)(17 25 21 29)(18 30 22 26)(19 27 23 31)(20 32 24 28)(41 110 45 106)(42 107 46 111)(43 112 47 108)(44 109 48 105)(49 94 53 90)(50 91 54 95)(51 96 55 92)(52 93 56 89)(57 80 61 76)(58 77 62 73)(59 74 63 78)(60 79 64 75)(65 82 69 86)(66 87 70 83)(67 84 71 88)(68 81 72 85)(97 120 101 116)(98 117 102 113)(99 114 103 118)(100 119 104 115)
(1 110 42)(2 43 111)(3 112 44)(4 45 105)(5 106 46)(6 47 107)(7 108 48)(8 41 109)(9 87 89)(10 90 88)(11 81 91)(12 92 82)(13 83 93)(14 94 84)(15 85 95)(16 96 86)(17 51 57)(18 58 52)(19 53 59)(20 60 54)(21 55 61)(22 62 56)(23 49 63)(24 64 50)(25 101 65)(26 66 102)(27 103 67)(28 68 104)(29 97 69)(30 70 98)(31 99 71)(32 72 100)(33 77 113)(34 114 78)(35 79 115)(36 116 80)(37 73 117)(38 118 74)(39 75 119)(40 120 76)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,16,28,18,38)(2,29,39,9,19)(3,40,20,30,10)(4,21,11,33,31)(5,12,32,22,34)(6,25,35,13,23)(7,36,24,26,14)(8,17,15,37,27)(41,51,85,73,103)(42,86,104,52,74)(43,97,75,87,53)(44,76,54,98,88)(45,55,81,77,99)(46,82,100,56,78)(47,101,79,83,49)(48,80,50,102,84)(57,95,117,67,109)(58,118,110,96,68)(59,111,69,119,89)(60,70,90,112,120)(61,91,113,71,105)(62,114,106,92,72)(63,107,65,115,93)(64,66,94,108,116), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96)(97,99,101,103)(98,100,102,104)(105,107,109,111)(106,108,110,112)(113,115,117,119)(114,116,118,120), (1,4,5,8)(2,3,6,7)(9,30,13,26)(10,23,14,19)(11,32,15,28)(12,17,16,21)(18,33,22,37)(20,35,24,39)(25,36,29,40)(27,38,31,34)(41,108,45,112)(42,44,46,48)(43,110,47,106)(49,114,53,118)(50,104,54,100)(51,116,55,120)(52,98,56,102)(57,65,61,69)(58,83,62,87)(59,67,63,71)(60,85,64,81)(66,77,70,73)(68,79,72,75)(74,88,78,84)(76,82,80,86)(89,117,93,113)(90,103,94,99)(91,119,95,115)(92,97,96,101)(105,111,109,107), (1,3,5,7)(2,8,6,4)(9,37,13,33)(10,34,14,38)(11,39,15,35)(12,36,16,40)(17,25,21,29)(18,30,22,26)(19,27,23,31)(20,32,24,28)(41,110,45,106)(42,107,46,111)(43,112,47,108)(44,109,48,105)(49,94,53,90)(50,91,54,95)(51,96,55,92)(52,93,56,89)(57,80,61,76)(58,77,62,73)(59,74,63,78)(60,79,64,75)(65,82,69,86)(66,87,70,83)(67,84,71,88)(68,81,72,85)(97,120,101,116)(98,117,102,113)(99,114,103,118)(100,119,104,115), (1,110,42)(2,43,111)(3,112,44)(4,45,105)(5,106,46)(6,47,107)(7,108,48)(8,41,109)(9,87,89)(10,90,88)(11,81,91)(12,92,82)(13,83,93)(14,94,84)(15,85,95)(16,96,86)(17,51,57)(18,58,52)(19,53,59)(20,60,54)(21,55,61)(22,62,56)(23,49,63)(24,64,50)(25,101,65)(26,66,102)(27,103,67)(28,68,104)(29,97,69)(30,70,98)(31,99,71)(32,72,100)(33,77,113)(34,114,78)(35,79,115)(36,116,80)(37,73,117)(38,118,74)(39,75,119)(40,120,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,16,28,18,38)(2,29,39,9,19)(3,40,20,30,10)(4,21,11,33,31)(5,12,32,22,34)(6,25,35,13,23)(7,36,24,26,14)(8,17,15,37,27)(41,51,85,73,103)(42,86,104,52,74)(43,97,75,87,53)(44,76,54,98,88)(45,55,81,77,99)(46,82,100,56,78)(47,101,79,83,49)(48,80,50,102,84)(57,95,117,67,109)(58,118,110,96,68)(59,111,69,119,89)(60,70,90,112,120)(61,91,113,71,105)(62,114,106,92,72)(63,107,65,115,93)(64,66,94,108,116), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96)(97,99,101,103)(98,100,102,104)(105,107,109,111)(106,108,110,112)(113,115,117,119)(114,116,118,120), (1,4,5,8)(2,3,6,7)(9,30,13,26)(10,23,14,19)(11,32,15,28)(12,17,16,21)(18,33,22,37)(20,35,24,39)(25,36,29,40)(27,38,31,34)(41,108,45,112)(42,44,46,48)(43,110,47,106)(49,114,53,118)(50,104,54,100)(51,116,55,120)(52,98,56,102)(57,65,61,69)(58,83,62,87)(59,67,63,71)(60,85,64,81)(66,77,70,73)(68,79,72,75)(74,88,78,84)(76,82,80,86)(89,117,93,113)(90,103,94,99)(91,119,95,115)(92,97,96,101)(105,111,109,107), (1,3,5,7)(2,8,6,4)(9,37,13,33)(10,34,14,38)(11,39,15,35)(12,36,16,40)(17,25,21,29)(18,30,22,26)(19,27,23,31)(20,32,24,28)(41,110,45,106)(42,107,46,111)(43,112,47,108)(44,109,48,105)(49,94,53,90)(50,91,54,95)(51,96,55,92)(52,93,56,89)(57,80,61,76)(58,77,62,73)(59,74,63,78)(60,79,64,75)(65,82,69,86)(66,87,70,83)(67,84,71,88)(68,81,72,85)(97,120,101,116)(98,117,102,113)(99,114,103,118)(100,119,104,115), (1,110,42)(2,43,111)(3,112,44)(4,45,105)(5,106,46)(6,47,107)(7,108,48)(8,41,109)(9,87,89)(10,90,88)(11,81,91)(12,92,82)(13,83,93)(14,94,84)(15,85,95)(16,96,86)(17,51,57)(18,58,52)(19,53,59)(20,60,54)(21,55,61)(22,62,56)(23,49,63)(24,64,50)(25,101,65)(26,66,102)(27,103,67)(28,68,104)(29,97,69)(30,70,98)(31,99,71)(32,72,100)(33,77,113)(34,114,78)(35,79,115)(36,116,80)(37,73,117)(38,118,74)(39,75,119)(40,120,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,16,28,18,38),(2,29,39,9,19),(3,40,20,30,10),(4,21,11,33,31),(5,12,32,22,34),(6,25,35,13,23),(7,36,24,26,14),(8,17,15,37,27),(41,51,85,73,103),(42,86,104,52,74),(43,97,75,87,53),(44,76,54,98,88),(45,55,81,77,99),(46,82,100,56,78),(47,101,79,83,49),(48,80,50,102,84),(57,95,117,67,109),(58,118,110,96,68),(59,111,69,119,89),(60,70,90,112,120),(61,91,113,71,105),(62,114,106,92,72),(63,107,65,115,93),(64,66,94,108,116)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64),(65,67,69,71),(66,68,70,72),(73,75,77,79),(74,76,78,80),(81,83,85,87),(82,84,86,88),(89,91,93,95),(90,92,94,96),(97,99,101,103),(98,100,102,104),(105,107,109,111),(106,108,110,112),(113,115,117,119),(114,116,118,120)], [(1,4,5,8),(2,3,6,7),(9,30,13,26),(10,23,14,19),(11,32,15,28),(12,17,16,21),(18,33,22,37),(20,35,24,39),(25,36,29,40),(27,38,31,34),(41,108,45,112),(42,44,46,48),(43,110,47,106),(49,114,53,118),(50,104,54,100),(51,116,55,120),(52,98,56,102),(57,65,61,69),(58,83,62,87),(59,67,63,71),(60,85,64,81),(66,77,70,73),(68,79,72,75),(74,88,78,84),(76,82,80,86),(89,117,93,113),(90,103,94,99),(91,119,95,115),(92,97,96,101),(105,111,109,107)], [(1,3,5,7),(2,8,6,4),(9,37,13,33),(10,34,14,38),(11,39,15,35),(12,36,16,40),(17,25,21,29),(18,30,22,26),(19,27,23,31),(20,32,24,28),(41,110,45,106),(42,107,46,111),(43,112,47,108),(44,109,48,105),(49,94,53,90),(50,91,54,95),(51,96,55,92),(52,93,56,89),(57,80,61,76),(58,77,62,73),(59,74,63,78),(60,79,64,75),(65,82,69,86),(66,87,70,83),(67,84,71,88),(68,81,72,85),(97,120,101,116),(98,117,102,113),(99,114,103,118),(100,119,104,115)], [(1,110,42),(2,43,111),(3,112,44),(4,45,105),(5,106,46),(6,47,107),(7,108,48),(8,41,109),(9,87,89),(10,90,88),(11,81,91),(12,92,82),(13,83,93),(14,94,84),(15,85,95),(16,96,86),(17,51,57),(18,58,52),(19,53,59),(20,60,54),(21,55,61),(22,62,56),(23,49,63),(24,64,50),(25,101,65),(26,66,102),(27,103,67),(28,68,104),(29,97,69),(30,70,98),(31,99,71),(32,72,100),(33,77,113),(34,114,78),(35,79,115),(36,116,80),(37,73,117),(38,118,74),(39,75,119),(40,120,76)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

Matrix representation of C5⋊U2(𝔽3) in GL6(𝔽241)

100000
010000
000100
000010
000001
00240240240240
,
6400000
0640000
001000
00240240240240
000001
000010
,
010000
24000000
001000
000100
000010
000001
,
6400000
01770000
001000
000100
000010
000001
,
881520000
1531520000
001000
000100
000010
000001
,
010000
6400000
001000
000010
00240240240240
000100

G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,240,0,0,1,0,0,240,0,0,0,1,0,240,0,0,0,0,1,240],[64,0,0,0,0,0,0,64,0,0,0,0,0,0,1,240,0,0,0,0,0,240,0,0,0,0,0,240,0,1,0,0,0,240,1,0],[0,240,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[64,0,0,0,0,0,0,177,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[88,153,0,0,0,0,152,152,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,64,0,0,0,0,1,0,0,0,0,0,0,0,1,0,240,0,0,0,0,0,240,1,0,0,0,1,240,0,0,0,0,0,240,0] >;

C5⋊U2(𝔽3) in GAP, Magma, Sage, TeX

C_5\rtimes {\rm U}_2({\mathbb F}_3)
% in TeX

G:=Group("C5:U(2,3)");
// GroupNames label

G:=SmallGroup(480,961);
// by ID

G=gap.SmallGroup(480,961);
# by ID

G:=PCGroup([7,-2,-2,-3,-5,-2,2,-2,14,1688,170,1011,682,4204,3168,172,2525,1909,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^5=b^4=e^3=1,c^2=d^2=b^2,f^2=b,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f^-1=a^2,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=b^2*c,e*c*e^-1=b^2*c*d,f*c*f^-1=c*d,e*d*e^-1=c,f*d*f^-1=b^2*d,f*e*f^-1=e^-1>;
// generators/relations

Export

Subgroup lattice of C5⋊U2(𝔽3) in TeX
Character table of C5⋊U2(𝔽3) in TeX

׿
×
𝔽