Extensions 1→N→G→Q→1 with N=C5 and Q=S3×M4(2)

Direct product G=N×Q with N=C5 and Q=S3×M4(2)
dρLabelID
C5×S3×M4(2)1204C5xS3xM4(2)480,785

Semidirect products G=N:Q with N=C5 and Q=S3×M4(2)
extensionφ:Q→Aut NdρLabelID
C51(S3×M4(2)) = S3×C4.F5φ: S3×M4(2)/C4×S3C4 ⊆ Aut C51208C5:1(S3xM4(2))480,988
C52(S3×M4(2)) = D15⋊M4(2)φ: S3×M4(2)/C4×S3C4 ⊆ Aut C51208C5:2(S3xM4(2))480,991
C53(S3×M4(2)) = D152M4(2)φ: S3×M4(2)/C2×Dic3C4 ⊆ Aut C51208+C5:3(S3xM4(2))480,1007
C54(S3×M4(2)) = S3×C22.F5φ: S3×M4(2)/C22×S3C4 ⊆ Aut C51208-C5:4(S3xM4(2))480,1004
C55(S3×M4(2)) = S3×C8⋊D5φ: S3×M4(2)/S3×C8C2 ⊆ Aut C51204C5:5(S3xM4(2))480,321
C56(S3×M4(2)) = C40⋊D6φ: S3×M4(2)/C8⋊S3C2 ⊆ Aut C51204C5:6(S3xM4(2))480,322
C57(S3×M4(2)) = D154M4(2)φ: S3×M4(2)/C4.Dic3C2 ⊆ Aut C51204C5:7(S3xM4(2))480,368
C58(S3×M4(2)) = M4(2)×D15φ: S3×M4(2)/C3×M4(2)C2 ⊆ Aut C51204C5:8(S3xM4(2))480,871
C59(S3×M4(2)) = S3×C4.Dic5φ: S3×M4(2)/S3×C2×C4C2 ⊆ Aut C51204C5:9(S3xM4(2))480,363


׿
×
𝔽