Extensions 1→N→G→Q→1 with N=C2×A4 and Q=D10

Direct product G=N×Q with N=C2×A4 and Q=D10
dρLabelID
C22×D5×A460C2^2xD5xA4480,1202

Semidirect products G=N:Q with N=C2×A4 and Q=D10
extensionφ:Q→Out NdρLabelID
(C2×A4)⋊1D10 = C2×D5×S4φ: D10/D5C2 ⊆ Out C2×A4306+(C2xA4):1D10480,1193
(C2×A4)⋊2D10 = C22×C5⋊S4φ: D10/C10C2 ⊆ Out C2×A460(C2xA4):2D10480,1199

Non-split extensions G=N.Q with N=C2×A4 and Q=D10
extensionφ:Q→Out NdρLabelID
(C2×A4).1D10 = A4⋊Dic10φ: D10/D5C2 ⊆ Out C2×A41206-(C2xA4).1D10480,975
(C2×A4).2D10 = Dic5×S4φ: D10/D5C2 ⊆ Out C2×A4606-(C2xA4).2D10480,976
(C2×A4).3D10 = Dic52S4φ: D10/D5C2 ⊆ Out C2×A4606(C2xA4).3D10480,977
(C2×A4).4D10 = Dic5⋊S4φ: D10/D5C2 ⊆ Out C2×A4606(C2xA4).4D10480,978
(C2×A4).5D10 = D5×A4⋊C4φ: D10/D5C2 ⊆ Out C2×A4606(C2xA4).5D10480,979
(C2×A4).6D10 = D10⋊S4φ: D10/D5C2 ⊆ Out C2×A4606(C2xA4).6D10480,980
(C2×A4).7D10 = A4⋊D20φ: D10/D5C2 ⊆ Out C2×A4606+(C2xA4).7D10480,981
(C2×A4).8D10 = C20.1S4φ: D10/C10C2 ⊆ Out C2×A41206-(C2xA4).8D10480,1024
(C2×A4).9D10 = C4×C5⋊S4φ: D10/C10C2 ⊆ Out C2×A4606(C2xA4).9D10480,1025
(C2×A4).10D10 = C20⋊S4φ: D10/C10C2 ⊆ Out C2×A4606+(C2xA4).10D10480,1026
(C2×A4).11D10 = C2×A4⋊Dic5φ: D10/C10C2 ⊆ Out C2×A4120(C2xA4).11D10480,1033
(C2×A4).12D10 = C242D15φ: D10/C10C2 ⊆ Out C2×A4606(C2xA4).12D10480,1034
(C2×A4).13D10 = A4×Dic10φ: trivial image1206-(C2xA4).13D10480,1035
(C2×A4).14D10 = C4×D5×A4φ: trivial image606(C2xA4).14D10480,1036
(C2×A4).15D10 = A4×D20φ: trivial image606+(C2xA4).15D10480,1037
(C2×A4).16D10 = C2×A4×Dic5φ: trivial image120(C2xA4).16D10480,1044
(C2×A4).17D10 = A4×C5⋊D4φ: trivial image606(C2xA4).17D10480,1045

׿
×
𝔽