Extensions 1→N→G→Q→1 with N=C3×D20 and Q=C4

Direct product G=N×Q with N=C3×D20 and Q=C4
dρLabelID
C12×D20240C12xD20480,666

Semidirect products G=N:Q with N=C3×D20 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×D20)⋊1C4 = D20⋊Dic3φ: C4/C1C4 ⊆ Out C3×D201208(C3xD20):1C4480,312
(C3×D20)⋊2C4 = D202Dic3φ: C4/C1C4 ⊆ Out C3×D201208(C3xD20):2C4480,315
(C3×D20)⋊3C4 = D4×C3⋊F5φ: C4/C1C4 ⊆ Out C3×D20608(C3xD20):3C4480,1067
(C3×D20)⋊4C4 = C3×D20⋊C4φ: C4/C1C4 ⊆ Out C3×D201208(C3xD20):4C4480,287
(C3×D20)⋊5C4 = C3×Q82F5φ: C4/C1C4 ⊆ Out C3×D201208(C3xD20):5C4480,290
(C3×D20)⋊6C4 = C3×D4×F5φ: C4/C1C4 ⊆ Out C3×D20608(C3xD20):6C4480,1054
(C3×D20)⋊7C4 = C6.D40φ: C4/C2C2 ⊆ Out C3×D20240(C3xD20):7C4480,41
(C3×D20)⋊8C4 = C60.97D4φ: C4/C2C2 ⊆ Out C3×D201204(C3xD20):8C4480,53
(C3×D20)⋊9C4 = Dic3×D20φ: C4/C2C2 ⊆ Out C3×D20240(C3xD20):9C4480,501
(C3×D20)⋊10C4 = C30.D8φ: C4/C2C2 ⊆ Out C3×D20240(C3xD20):10C4480,40
(C3×D20)⋊11C4 = C60.96D4φ: C4/C2C2 ⊆ Out C3×D201204(C3xD20):11C4480,52
(C3×D20)⋊12C4 = D208Dic3φ: C4/C2C2 ⊆ Out C3×D20240(C3xD20):12C4480,510
(C3×D20)⋊13C4 = C3×D204C4φ: C4/C2C2 ⊆ Out C3×D201202(C3xD20):13C4480,83
(C3×D20)⋊14C4 = C3×D205C4φ: C4/C2C2 ⊆ Out C3×D20240(C3xD20):14C4480,99
(C3×D20)⋊15C4 = C3×D206C4φ: C4/C2C2 ⊆ Out C3×D20240(C3xD20):15C4480,87
(C3×D20)⋊16C4 = C3×D207C4φ: C4/C2C2 ⊆ Out C3×D201204(C3xD20):16C4480,103
(C3×D20)⋊17C4 = C3×D208C4φ: C4/C2C2 ⊆ Out C3×D20240(C3xD20):17C4480,686

Non-split extensions G=N.Q with N=C3×D20 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×D20).1C4 = D20.Dic3φ: C4/C1C4 ⊆ Out C3×D202408(C3xD20).1C4480,1068
(C3×D20).2C4 = C3×Q8.F5φ: C4/C1C4 ⊆ Out C3×D202408(C3xD20).2C4480,1055
(C3×D20).3C4 = D20.3Dic3φ: C4/C2C2 ⊆ Out C3×D202404(C3xD20).3C4480,359
(C3×D20).4C4 = D20.2Dic3φ: C4/C2C2 ⊆ Out C3×D202404(C3xD20).4C4480,360
(C3×D20).5C4 = C3×D20.2C4φ: C4/C2C2 ⊆ Out C3×D202404(C3xD20).5C4480,700
(C3×D20).6C4 = C3×D20.3C4φ: trivial image2402(C3xD20).6C4480,694

׿
×
𝔽