Extensions 1→N→G→Q→1 with N=C3 and Q=D5×M4(2)

Direct product G=N×Q with N=C3 and Q=D5×M4(2)
dρLabelID
C3×D5×M4(2)1204C3xD5xM4(2)480,699

Semidirect products G=N:Q with N=C3 and Q=D5×M4(2)
extensionφ:Q→Aut NdρLabelID
C31(D5×M4(2)) = D5×C8⋊S3φ: D5×M4(2)/C8×D5C2 ⊆ Aut C31204C3:1(D5xM4(2))480,320
C32(D5×M4(2)) = C40⋊D6φ: D5×M4(2)/C8⋊D5C2 ⊆ Aut C31204C3:2(D5xM4(2))480,322
C33(D5×M4(2)) = D154M4(2)φ: D5×M4(2)/C4.Dic5C2 ⊆ Aut C31204C3:3(D5xM4(2))480,368
C34(D5×M4(2)) = M4(2)×D15φ: D5×M4(2)/C5×M4(2)C2 ⊆ Aut C31204C3:4(D5xM4(2))480,871
C35(D5×M4(2)) = D5×C4.Dic3φ: D5×M4(2)/C2×C4×D5C2 ⊆ Aut C31204C3:5(D5xM4(2))480,358


׿
×
𝔽