Extensions 1→N→G→Q→1 with N=C3×C52C8 and Q=C4

Direct product G=N×Q with N=C3×C52C8 and Q=C4
dρLabelID
C12×C52C8480C12xC5:2C8480,80

Semidirect products G=N:Q with N=C3×C52C8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×C52C8)⋊1C4 = C60.7Q8φ: C4/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8):1C4480,61
(C3×C52C8)⋊2C4 = C60.8Q8φ: C4/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8):2C4480,64
(C3×C52C8)⋊3C4 = Dic3×C52C8φ: C4/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8):3C4480,26
(C3×C52C8)⋊4C4 = Dic154C8φ: C4/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8):4C4480,27
(C3×C52C8)⋊5C4 = C30.22C42φ: C4/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8):5C4480,29
(C3×C52C8)⋊6C4 = C30.23C42φ: C4/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8):6C4480,30
(C3×C52C8)⋊7C4 = C3×C10.D8φ: C4/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8):7C4480,85
(C3×C52C8)⋊8C4 = C3×C20.Q8φ: C4/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8):8C4480,86
(C3×C52C8)⋊9C4 = C120⋊C4φ: C4/C2C2 ⊆ Out C3×C52C81204(C3xC5:2C8):9C4480,298
(C3×C52C8)⋊10C4 = D5.D24φ: C4/C2C2 ⊆ Out C3×C52C81204(C3xC5:2C8):10C4480,299
(C3×C52C8)⋊11C4 = C3×C42.D5φ: C4/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8):11C4480,81
(C3×C52C8)⋊12C4 = C3×C408C4φ: C4/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8):12C4480,93
(C3×C52C8)⋊13C4 = C8×C3⋊F5φ: C4/C2C2 ⊆ Out C3×C52C81204(C3xC5:2C8):13C4480,296
(C3×C52C8)⋊14C4 = C24⋊F5φ: C4/C2C2 ⊆ Out C3×C52C81204(C3xC5:2C8):14C4480,297
(C3×C52C8)⋊15C4 = C3×C40⋊C4φ: C4/C2C2 ⊆ Out C3×C52C81204(C3xC5:2C8):15C4480,273
(C3×C52C8)⋊16C4 = C3×D5.D8φ: C4/C2C2 ⊆ Out C3×C52C81204(C3xC5:2C8):16C4480,274
(C3×C52C8)⋊17C4 = F5×C24φ: C4/C2C2 ⊆ Out C3×C52C81204(C3xC5:2C8):17C4480,271
(C3×C52C8)⋊18C4 = C3×C8⋊F5φ: C4/C2C2 ⊆ Out C3×C52C81204(C3xC5:2C8):18C4480,272
(C3×C52C8)⋊19C4 = Dic5×C24φ: trivial image480(C3xC5:2C8):19C4480,91

Non-split extensions G=N.Q with N=C3×C52C8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×C52C8).1C4 = C60.105D4φ: C4/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).1C4480,67
(C3×C52C8).2C4 = D5×C3⋊C16φ: C4/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).2C4480,7
(C3×C52C8).3C4 = C40.51D6φ: C4/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).3C4480,10
(C3×C52C8).4C4 = C3×C20.53D4φ: C4/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).4C4480,100
(C3×C52C8).5C4 = C40.Dic3φ: C4/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).5C4480,300
(C3×C52C8).6C4 = C24.1F5φ: C4/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).6C4480,301
(C3×C52C8).7C4 = C3×C80⋊C2φ: C4/C2C2 ⊆ Out C3×C52C82402(C3xC5:2C8).7C4480,76
(C3×C52C8).8C4 = C2×C15⋊C16φ: C4/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8).8C4480,302
(C3×C52C8).9C4 = C60.C8φ: C4/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).9C4480,303
(C3×C52C8).10C4 = C3×C40.C4φ: C4/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).10C4480,275
(C3×C52C8).11C4 = C3×D10.Q8φ: C4/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).11C4480,276
(C3×C52C8).12C4 = C6×C5⋊C16φ: C4/C2C2 ⊆ Out C3×C52C8480(C3xC5:2C8).12C4480,277
(C3×C52C8).13C4 = C3×C20.C8φ: C4/C2C2 ⊆ Out C3×C52C82404(C3xC5:2C8).13C4480,278
(C3×C52C8).14C4 = D5×C48φ: trivial image2402(C3xC5:2C8).14C4480,75

׿
×
𝔽