Copied to
clipboard

G = C24⋊F5order 480 = 25·3·5

5th semidirect product of C24 and F5 acting via F5/D5=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C245F5, C1205C4, C404Dic3, C30.9C42, C83(C3⋊F5), C15⋊C85C4, C6.2(C4×F5), C31(C8⋊F5), C154(C8⋊C4), C52(C24⋊C4), C60.55(C2×C4), (C8×D5).10S3, (C4×D5).94D6, C52C88Dic3, C12.57(C2×F5), (D5×C24).15C2, D10.13(C4×S3), C10.9(C4×Dic3), C60.C4.5C2, D5.2(C8⋊S3), Dic5.18(C4×S3), C20.17(C2×Dic3), (C3×D5).3M4(2), (D5×C12).122C22, C2.3(C4×C3⋊F5), (C2×C3⋊F5).3C4, (C4×C3⋊F5).5C2, C4.16(C2×C3⋊F5), (C3×C52C8)⋊14C4, (C6×D5).40(C2×C4), (C3×Dic5).48(C2×C4), SmallGroup(480,297)

Series: Derived Chief Lower central Upper central

C1C30 — C24⋊F5
C1C5C15C30C6×D5D5×C12C4×C3⋊F5 — C24⋊F5
C15C30 — C24⋊F5
C1C4C8

Generators and relations for C24⋊F5
 G = < a,b,c | a24=b5=c4=1, ab=ba, cac-1=a5, cbc-1=b3 >

Subgroups: 364 in 80 conjugacy classes, 37 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C8, C2×C4, D5, C10, Dic3, C12, C12, C2×C6, C15, C42, C2×C8, Dic5, C20, F5, D10, C3⋊C8, C24, C24, C2×Dic3, C2×C12, C3×D5, C30, C8⋊C4, C52C8, C40, C5⋊C8, C4×D5, C2×F5, C2×C3⋊C8, C4×Dic3, C2×C24, C3×Dic5, C60, C3⋊F5, C6×D5, C8×D5, D5⋊C8, C4×F5, C24⋊C4, C3×C52C8, C120, C15⋊C8, D5×C12, C2×C3⋊F5, C8⋊F5, D5×C24, C60.C4, C4×C3⋊F5, C24⋊F5
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C42, M4(2), F5, C4×S3, C2×Dic3, C8⋊C4, C2×F5, C8⋊S3, C4×Dic3, C3⋊F5, C4×F5, C24⋊C4, C2×C3⋊F5, C8⋊F5, C4×C3⋊F5, C24⋊F5

Smallest permutation representation of C24⋊F5
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 53 78 104 32)(2 54 79 105 33)(3 55 80 106 34)(4 56 81 107 35)(5 57 82 108 36)(6 58 83 109 37)(7 59 84 110 38)(8 60 85 111 39)(9 61 86 112 40)(10 62 87 113 41)(11 63 88 114 42)(12 64 89 115 43)(13 65 90 116 44)(14 66 91 117 45)(15 67 92 118 46)(16 68 93 119 47)(17 69 94 120 48)(18 70 95 97 25)(19 71 96 98 26)(20 72 73 99 27)(21 49 74 100 28)(22 50 75 101 29)(23 51 76 102 30)(24 52 77 103 31)
(2 6)(3 11)(4 16)(5 21)(8 12)(9 17)(10 22)(14 18)(15 23)(20 24)(25 117 70 91)(26 98 71 96)(27 103 72 77)(28 108 49 82)(29 113 50 87)(30 118 51 92)(31 99 52 73)(32 104 53 78)(33 109 54 83)(34 114 55 88)(35 119 56 93)(36 100 57 74)(37 105 58 79)(38 110 59 84)(39 115 60 89)(40 120 61 94)(41 101 62 75)(42 106 63 80)(43 111 64 85)(44 116 65 90)(45 97 66 95)(46 102 67 76)(47 107 68 81)(48 112 69 86)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,53,78,104,32)(2,54,79,105,33)(3,55,80,106,34)(4,56,81,107,35)(5,57,82,108,36)(6,58,83,109,37)(7,59,84,110,38)(8,60,85,111,39)(9,61,86,112,40)(10,62,87,113,41)(11,63,88,114,42)(12,64,89,115,43)(13,65,90,116,44)(14,66,91,117,45)(15,67,92,118,46)(16,68,93,119,47)(17,69,94,120,48)(18,70,95,97,25)(19,71,96,98,26)(20,72,73,99,27)(21,49,74,100,28)(22,50,75,101,29)(23,51,76,102,30)(24,52,77,103,31), (2,6)(3,11)(4,16)(5,21)(8,12)(9,17)(10,22)(14,18)(15,23)(20,24)(25,117,70,91)(26,98,71,96)(27,103,72,77)(28,108,49,82)(29,113,50,87)(30,118,51,92)(31,99,52,73)(32,104,53,78)(33,109,54,83)(34,114,55,88)(35,119,56,93)(36,100,57,74)(37,105,58,79)(38,110,59,84)(39,115,60,89)(40,120,61,94)(41,101,62,75)(42,106,63,80)(43,111,64,85)(44,116,65,90)(45,97,66,95)(46,102,67,76)(47,107,68,81)(48,112,69,86)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,53,78,104,32)(2,54,79,105,33)(3,55,80,106,34)(4,56,81,107,35)(5,57,82,108,36)(6,58,83,109,37)(7,59,84,110,38)(8,60,85,111,39)(9,61,86,112,40)(10,62,87,113,41)(11,63,88,114,42)(12,64,89,115,43)(13,65,90,116,44)(14,66,91,117,45)(15,67,92,118,46)(16,68,93,119,47)(17,69,94,120,48)(18,70,95,97,25)(19,71,96,98,26)(20,72,73,99,27)(21,49,74,100,28)(22,50,75,101,29)(23,51,76,102,30)(24,52,77,103,31), (2,6)(3,11)(4,16)(5,21)(8,12)(9,17)(10,22)(14,18)(15,23)(20,24)(25,117,70,91)(26,98,71,96)(27,103,72,77)(28,108,49,82)(29,113,50,87)(30,118,51,92)(31,99,52,73)(32,104,53,78)(33,109,54,83)(34,114,55,88)(35,119,56,93)(36,100,57,74)(37,105,58,79)(38,110,59,84)(39,115,60,89)(40,120,61,94)(41,101,62,75)(42,106,63,80)(43,111,64,85)(44,116,65,90)(45,97,66,95)(46,102,67,76)(47,107,68,81)(48,112,69,86) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,53,78,104,32),(2,54,79,105,33),(3,55,80,106,34),(4,56,81,107,35),(5,57,82,108,36),(6,58,83,109,37),(7,59,84,110,38),(8,60,85,111,39),(9,61,86,112,40),(10,62,87,113,41),(11,63,88,114,42),(12,64,89,115,43),(13,65,90,116,44),(14,66,91,117,45),(15,67,92,118,46),(16,68,93,119,47),(17,69,94,120,48),(18,70,95,97,25),(19,71,96,98,26),(20,72,73,99,27),(21,49,74,100,28),(22,50,75,101,29),(23,51,76,102,30),(24,52,77,103,31)], [(2,6),(3,11),(4,16),(5,21),(8,12),(9,17),(10,22),(14,18),(15,23),(20,24),(25,117,70,91),(26,98,71,96),(27,103,72,77),(28,108,49,82),(29,113,50,87),(30,118,51,92),(31,99,52,73),(32,104,53,78),(33,109,54,83),(34,114,55,88),(35,119,56,93),(36,100,57,74),(37,105,58,79),(38,110,59,84),(39,115,60,89),(40,120,61,94),(41,101,62,75),(42,106,63,80),(43,111,64,85),(44,116,65,90),(45,97,66,95),(46,102,67,76),(47,107,68,81),(48,112,69,86)]])

60 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H 5 6A6B6C8A8B8C8D8E8F8G8H 10 12A12B12C12D15A15B20A20B24A24B24C24D24E24F24G24H30A30B40A40B40C40D60A60B60C60D120A···120H
order1222344444444566688888888101212121215152020242424242424242430304040404060606060120···120
size11552115530303030421010221010303030304221010444422221010101044444444444···4

60 irreducible representations

dim111111112222222244444444
type+++++--+++
imageC1C2C2C2C4C4C4C4S3Dic3Dic3D6M4(2)C4×S3C4×S3C8⋊S3F5C2×F5C3⋊F5C4×F5C2×C3⋊F5C8⋊F5C4×C3⋊F5C24⋊F5
kernelC24⋊F5D5×C24C60.C4C4×C3⋊F5C3×C52C8C120C15⋊C8C2×C3⋊F5C8×D5C52C8C40C4×D5C3×D5Dic5D10D5C24C12C8C6C4C3C2C1
# reps111122441111422811222448

Matrix representation of C24⋊F5 in GL4(𝔽241) generated by

131213028
010321328
282131030
280213131
,
000240
100240
010240
001240
,
240010
001240
024010
0010
G:=sub<GL(4,GF(241))| [131,0,28,28,213,103,213,0,0,213,103,213,28,28,0,131],[0,1,0,0,0,0,1,0,0,0,0,1,240,240,240,240],[240,0,0,0,0,0,240,0,1,1,1,1,0,240,0,0] >;

C24⋊F5 in GAP, Magma, Sage, TeX

C_{24}\rtimes F_5
% in TeX

G:=Group("C24:F5");
// GroupNames label

G:=SmallGroup(480,297);
// by ID

G=gap.SmallGroup(480,297);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,253,64,80,2693,14118,4724]);
// Polycyclic

G:=Group<a,b,c|a^24=b^5=c^4=1,a*b=b*a,c*a*c^-1=a^5,c*b*c^-1=b^3>;
// generators/relations

׿
×
𝔽