Copied to
clipboard

G = C120⋊C4order 480 = 25·3·5

2nd semidirect product of C120 and C4 acting faithfully

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C242F5, C1202C4, C402Dic3, D10.8D12, Dic5.8Dic6, C82(C3⋊F5), C5⋊(C8⋊Dic3), C31(C40⋊C4), (C8×D5).5S3, C152(C4.Q8), C6.1(C4⋊F5), C30.8(C4⋊C4), C60.47(C2×C4), (C4×D5).86D6, (D5×C24).7C2, (C6×D5).51D4, C52C85Dic3, C12.47(C2×F5), C60⋊C4.7C2, (C3×Dic5).9Q8, (C3×D5).6SD16, C20.8(C2×Dic3), C2.4(C60⋊C4), D5.1(C24⋊C2), C10.1(C4⋊Dic3), (D5×C12).111C22, C4.8(C2×C3⋊F5), (C3×C52C8)⋊9C4, SmallGroup(480,298)

Series: Derived Chief Lower central Upper central

C1C60 — C120⋊C4
C1C5C15C30C6×D5D5×C12C60⋊C4 — C120⋊C4
C15C30C60 — C120⋊C4
C1C2C4C8

Generators and relations for C120⋊C4
 G = < a,b | a120=b4=1, bab-1=a107 >

Subgroups: 460 in 72 conjugacy classes, 33 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C8, C2×C4, D5, C10, Dic3, C12, C12, C2×C6, C15, C4⋊C4, C2×C8, Dic5, C20, F5, D10, C24, C24, C2×Dic3, C2×C12, C3×D5, C30, C4.Q8, C52C8, C40, C4×D5, C2×F5, C4⋊Dic3, C2×C24, C3×Dic5, C60, C3⋊F5, C6×D5, C8×D5, C4⋊F5, C8⋊Dic3, C3×C52C8, C120, D5×C12, C2×C3⋊F5, C40⋊C4, D5×C24, C60⋊C4, C120⋊C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C4⋊C4, SD16, F5, Dic6, D12, C2×Dic3, C4.Q8, C2×F5, C24⋊C2, C4⋊Dic3, C3⋊F5, C4⋊F5, C8⋊Dic3, C2×C3⋊F5, C40⋊C4, C60⋊C4, C120⋊C4

Smallest permutation representation of C120⋊C4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 76 61 16)(2 39 110 3)(4 85 88 97)(5 48 17 84)(6 11 66 71)(7 94 115 58)(8 57 44 45)(9 20 93 32)(10 103 22 19)(12 29 120 113)(13 112 49 100)(14 75 98 87)(15 38 27 74)(18 47 54 35)(21 56 81 116)(23 102 59 90)(24 65 108 77)(25 28 37 64)(26 111 86 51)(30 83 42 119)(31 46 91 106)(33 92 69 80)(34 55 118 67)(36 101 96 41)(40 73 52 109)(43 82 79 70)(50 63 62 99)(53 72 89 60)(68 117 104 105)(78 107 114 95)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,76,61,16)(2,39,110,3)(4,85,88,97)(5,48,17,84)(6,11,66,71)(7,94,115,58)(8,57,44,45)(9,20,93,32)(10,103,22,19)(12,29,120,113)(13,112,49,100)(14,75,98,87)(15,38,27,74)(18,47,54,35)(21,56,81,116)(23,102,59,90)(24,65,108,77)(25,28,37,64)(26,111,86,51)(30,83,42,119)(31,46,91,106)(33,92,69,80)(34,55,118,67)(36,101,96,41)(40,73,52,109)(43,82,79,70)(50,63,62,99)(53,72,89,60)(68,117,104,105)(78,107,114,95)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,76,61,16)(2,39,110,3)(4,85,88,97)(5,48,17,84)(6,11,66,71)(7,94,115,58)(8,57,44,45)(9,20,93,32)(10,103,22,19)(12,29,120,113)(13,112,49,100)(14,75,98,87)(15,38,27,74)(18,47,54,35)(21,56,81,116)(23,102,59,90)(24,65,108,77)(25,28,37,64)(26,111,86,51)(30,83,42,119)(31,46,91,106)(33,92,69,80)(34,55,118,67)(36,101,96,41)(40,73,52,109)(43,82,79,70)(50,63,62,99)(53,72,89,60)(68,117,104,105)(78,107,114,95) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,76,61,16),(2,39,110,3),(4,85,88,97),(5,48,17,84),(6,11,66,71),(7,94,115,58),(8,57,44,45),(9,20,93,32),(10,103,22,19),(12,29,120,113),(13,112,49,100),(14,75,98,87),(15,38,27,74),(18,47,54,35),(21,56,81,116),(23,102,59,90),(24,65,108,77),(25,28,37,64),(26,111,86,51),(30,83,42,119),(31,46,91,106),(33,92,69,80),(34,55,118,67),(36,101,96,41),(40,73,52,109),(43,82,79,70),(50,63,62,99),(53,72,89,60),(68,117,104,105),(78,107,114,95)]])

54 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F 5 6A6B6C8A8B8C8D 10 12A12B12C12D15A15B20A20B24A24B24C24D24E24F24G24H30A30B40A40B40C40D60A60B60C60D120A···120H
order1222344444456668888101212121215152020242424242424242430304040404060606060120···120
size11552210606060604210102210104221010444422221010101044444444444···4

54 irreducible representations

dim11111222222222244444444
type++++-+--+-+++
imageC1C2C2C4C4S3Q8D4Dic3Dic3D6SD16Dic6D12C24⋊C2F5C2×F5C3⋊F5C4⋊F5C2×C3⋊F5C40⋊C4C60⋊C4C120⋊C4
kernelC120⋊C4D5×C24C60⋊C4C3×C52C8C120C8×D5C3×Dic5C6×D5C52C8C40C4×D5C3×D5Dic5D10D5C24C12C8C6C4C3C2C1
# reps11222111111422811222448

Matrix representation of C120⋊C4 in GL6(𝔽241)

53950000
2081500000
00120229126
0012712229114
00121270114
00012115126
,
2231860000
168180000
00024000
00000240
00240000
00002400

G:=sub<GL(6,GF(241))| [53,208,0,0,0,0,95,150,0,0,0,0,0,0,12,127,12,0,0,0,0,12,127,12,0,0,229,229,0,115,0,0,126,114,114,126],[223,168,0,0,0,0,186,18,0,0,0,0,0,0,0,0,240,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,240,0,0] >;

C120⋊C4 in GAP, Magma, Sage, TeX

C_{120}\rtimes C_4
% in TeX

G:=Group("C120:C4");
// GroupNames label

G:=SmallGroup(480,298);
// by ID

G=gap.SmallGroup(480,298);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,64,675,80,2693,14118,4724]);
// Polycyclic

G:=Group<a,b|a^120=b^4=1,b*a*b^-1=a^107>;
// generators/relations

׿
×
𝔽