Extensions 1→N→G→Q→1 with N=C40 and Q=Dic3

Direct product G=NxQ with N=C40 and Q=Dic3
dρLabelID
Dic3xC40480Dic3xC40480,132

Semidirect products G=N:Q with N=C40 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C40:1Dic3 = D5.D24φ: Dic3/C3C4 ⊆ Aut C401204C40:1Dic3480,299
C40:2Dic3 = C120:C4φ: Dic3/C3C4 ⊆ Aut C401204C40:2Dic3480,298
C40:3Dic3 = C8xC3:F5φ: Dic3/C3C4 ⊆ Aut C401204C40:3Dic3480,296
C40:4Dic3 = C24:F5φ: Dic3/C3C4 ⊆ Aut C401204C40:4Dic3480,297
C40:5Dic3 = C120:9C4φ: Dic3/C6C2 ⊆ Aut C40480C40:5Dic3480,178
C40:6Dic3 = C120:10C4φ: Dic3/C6C2 ⊆ Aut C40480C40:6Dic3480,177
C40:7Dic3 = C8xDic15φ: Dic3/C6C2 ⊆ Aut C40480C40:7Dic3480,173
C40:8Dic3 = C120:13C4φ: Dic3/C6C2 ⊆ Aut C40480C40:8Dic3480,175
C40:9Dic3 = C5xC24:1C4φ: Dic3/C6C2 ⊆ Aut C40480C40:9Dic3480,137
C40:10Dic3 = C5xC8:Dic3φ: Dic3/C6C2 ⊆ Aut C40480C40:10Dic3480,136
C40:11Dic3 = C5xC24:C4φ: Dic3/C6C2 ⊆ Aut C40480C40:11Dic3480,134

Non-split extensions G=N.Q with N=C40 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C40.1Dic3 = C24.1F5φ: Dic3/C3C4 ⊆ Aut C402404C40.1Dic3480,301
C40.2Dic3 = C40.Dic3φ: Dic3/C3C4 ⊆ Aut C402404C40.2Dic3480,300
C40.3Dic3 = C15:C32φ: Dic3/C3C4 ⊆ Aut C404804C40.3Dic3480,6
C40.4Dic3 = C24.F5φ: Dic3/C3C4 ⊆ Aut C402404C40.4Dic3480,294
C40.5Dic3 = C120.C4φ: Dic3/C3C4 ⊆ Aut C402404C40.5Dic3480,295
C40.6Dic3 = C4.18D60φ: Dic3/C6C2 ⊆ Aut C402402C40.6Dic3480,179
C40.7Dic3 = C15:3C32φ: Dic3/C6C2 ⊆ Aut C404802C40.7Dic3480,3
C40.8Dic3 = C2xC15:3C16φ: Dic3/C6C2 ⊆ Aut C40480C40.8Dic3480,171
C40.9Dic3 = C60.7C8φ: Dic3/C6C2 ⊆ Aut C402402C40.9Dic3480,172
C40.10Dic3 = C5xC24.C4φ: Dic3/C6C2 ⊆ Aut C402402C40.10Dic3480,138
C40.11Dic3 = C5xC12.C8φ: Dic3/C6C2 ⊆ Aut C402402C40.11Dic3480,131
C40.12Dic3 = C5xC3:C32central extension (φ=1)4802C40.12Dic3480,1
C40.13Dic3 = C10xC3:C16central extension (φ=1)480C40.13Dic3480,130

׿
x
:
Z
F
o
wr
Q
<