Extensions 1→N→G→Q→1 with N=C40 and Q=Dic3

Direct product G=N×Q with N=C40 and Q=Dic3
dρLabelID
Dic3×C40480Dic3xC40480,132

Semidirect products G=N:Q with N=C40 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C401Dic3 = D5.D24φ: Dic3/C3C4 ⊆ Aut C401204C40:1Dic3480,299
C402Dic3 = C120⋊C4φ: Dic3/C3C4 ⊆ Aut C401204C40:2Dic3480,298
C403Dic3 = C8×C3⋊F5φ: Dic3/C3C4 ⊆ Aut C401204C40:3Dic3480,296
C404Dic3 = C24⋊F5φ: Dic3/C3C4 ⊆ Aut C401204C40:4Dic3480,297
C405Dic3 = C1209C4φ: Dic3/C6C2 ⊆ Aut C40480C40:5Dic3480,178
C406Dic3 = C12010C4φ: Dic3/C6C2 ⊆ Aut C40480C40:6Dic3480,177
C407Dic3 = C8×Dic15φ: Dic3/C6C2 ⊆ Aut C40480C40:7Dic3480,173
C408Dic3 = C12013C4φ: Dic3/C6C2 ⊆ Aut C40480C40:8Dic3480,175
C409Dic3 = C5×C241C4φ: Dic3/C6C2 ⊆ Aut C40480C40:9Dic3480,137
C4010Dic3 = C5×C8⋊Dic3φ: Dic3/C6C2 ⊆ Aut C40480C40:10Dic3480,136
C4011Dic3 = C5×C24⋊C4φ: Dic3/C6C2 ⊆ Aut C40480C40:11Dic3480,134

Non-split extensions G=N.Q with N=C40 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C40.1Dic3 = C24.1F5φ: Dic3/C3C4 ⊆ Aut C402404C40.1Dic3480,301
C40.2Dic3 = C40.Dic3φ: Dic3/C3C4 ⊆ Aut C402404C40.2Dic3480,300
C40.3Dic3 = C15⋊C32φ: Dic3/C3C4 ⊆ Aut C404804C40.3Dic3480,6
C40.4Dic3 = C24.F5φ: Dic3/C3C4 ⊆ Aut C402404C40.4Dic3480,294
C40.5Dic3 = C120.C4φ: Dic3/C3C4 ⊆ Aut C402404C40.5Dic3480,295
C40.6Dic3 = C4.18D60φ: Dic3/C6C2 ⊆ Aut C402402C40.6Dic3480,179
C40.7Dic3 = C153C32φ: Dic3/C6C2 ⊆ Aut C404802C40.7Dic3480,3
C40.8Dic3 = C2×C153C16φ: Dic3/C6C2 ⊆ Aut C40480C40.8Dic3480,171
C40.9Dic3 = C60.7C8φ: Dic3/C6C2 ⊆ Aut C402402C40.9Dic3480,172
C40.10Dic3 = C5×C24.C4φ: Dic3/C6C2 ⊆ Aut C402402C40.10Dic3480,138
C40.11Dic3 = C5×C12.C8φ: Dic3/C6C2 ⊆ Aut C402402C40.11Dic3480,131
C40.12Dic3 = C5×C3⋊C32central extension (φ=1)4802C40.12Dic3480,1
C40.13Dic3 = C10×C3⋊C16central extension (φ=1)480C40.13Dic3480,130

׿
×
𝔽