Extensions 1→N→G→Q→1 with N=C4×F5 and Q=S3

Direct product G=N×Q with N=C4×F5 and Q=S3
dρLabelID
C4×S3×F5608C4xS3xF5480,994

Semidirect products G=N:Q with N=C4×F5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×F5)⋊1S3 = D122F5φ: S3/C3C2 ⊆ Out C4×F51208-(C4xF5):1S3480,232
(C4×F5)⋊2S3 = D605C4φ: S3/C3C2 ⊆ Out C4×F51208+(C4xF5):2S3480,234
(C4×F5)⋊3S3 = F5×D12φ: S3/C3C2 ⊆ Out C4×F5608+(C4xF5):3S3480,995
(C4×F5)⋊4S3 = (C4×S3)⋊F5φ: S3/C3C2 ⊆ Out C4×F51208(C4xF5):4S3480,985

Non-split extensions G=N.Q with N=C4×F5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×F5).1S3 = F5×Dic6φ: S3/C3C2 ⊆ Out C4×F51208-(C4xF5).1S3480,982
(C4×F5).2S3 = C30.3C42φ: S3/C3C2 ⊆ Out C4×F51208(C4xF5).2S3480,225
(C4×F5).3S3 = F5×C3⋊C8φ: trivial image1208(C4xF5).3S3480,223

׿
×
𝔽