Extensions 1→N→G→Q→1 with N=C4xF5 and Q=S3

Direct product G=NxQ with N=C4xF5 and Q=S3
dρLabelID
C4xS3xF5608C4xS3xF5480,994

Semidirect products G=N:Q with N=C4xF5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4xF5):1S3 = D12:2F5φ: S3/C3C2 ⊆ Out C4xF51208-(C4xF5):1S3480,232
(C4xF5):2S3 = D60:5C4φ: S3/C3C2 ⊆ Out C4xF51208+(C4xF5):2S3480,234
(C4xF5):3S3 = F5xD12φ: S3/C3C2 ⊆ Out C4xF5608+(C4xF5):3S3480,995
(C4xF5):4S3 = (C4xS3):F5φ: S3/C3C2 ⊆ Out C4xF51208(C4xF5):4S3480,985

Non-split extensions G=N.Q with N=C4xF5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4xF5).1S3 = F5xDic6φ: S3/C3C2 ⊆ Out C4xF51208-(C4xF5).1S3480,982
(C4xF5).2S3 = C30.3C42φ: S3/C3C2 ⊆ Out C4xF51208(C4xF5).2S3480,225
(C4xF5).3S3 = F5xC3:C8φ: trivial image1208(C4xF5).3S3480,223

׿
x
:
Z
F
o
wr
Q
<