direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: F5×D12, D60⋊6C4, C5⋊(C4×D12), C3⋊1(D4×F5), C15⋊1(C4×D4), C4⋊1(S3×F5), C20⋊1(C4×S3), C60⋊2(C2×C4), D6⋊F5⋊1C2, (C3×F5)⋊1D4, (C4×F5)⋊3S3, D6⋊1(C2×F5), C12⋊4(C2×F5), D30⋊1(C2×C4), (C5×D12)⋊6C4, C5⋊D12⋊1C4, (C12×F5)⋊3C2, C60⋊C4⋊2C2, Dic5⋊1(C4×S3), (C4×D5).37D6, (D5×D12).6C2, D5.1(C2×D12), (C2×F5).11D6, C6.14(C22×F5), D5.3(C4○D12), C30.14(C22×C4), (C6×D5).26C23, (C6×F5).10C22, D10.29(C22×S3), (D5×C12).45C22, (C2×S3×F5)⋊1C2, C2.17(C2×S3×F5), C10.14(S3×C2×C4), (S3×C10)⋊1(C2×C4), (C3×D5).1(C2×D4), (C2×S3×D5).1C22, (C2×C3⋊F5).3C22, (C3×Dic5)⋊8(C2×C4), (C3×D5).5(C4○D4), SmallGroup(480,995)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for F5×D12
G = < a,b,c,d | a5=b4=c12=d2=1, bab-1=a3, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 1172 in 188 conjugacy classes, 54 normal (34 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C2×C4, D4, C23, D5, D5, C10, C10, Dic3, C12, C12, D6, D6, C2×C6, C15, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, C20, F5, F5, D10, D10, C2×C10, C4×S3, D12, D12, C2×Dic3, C2×C12, C22×S3, C5×S3, C3×D5, D15, C30, C4×D4, C4×D5, D20, C5⋊D4, C5×D4, C2×F5, C2×F5, C22×D5, C4⋊Dic3, D6⋊C4, C4×C12, S3×C2×C4, C2×D12, C3×Dic5, C60, C3×F5, C3×F5, C3⋊F5, S3×D5, C6×D5, S3×C10, D30, C4×F5, C4⋊F5, C22⋊F5, D4×D5, C22×F5, C4×D12, C5⋊D12, D5×C12, C5×D12, D60, S3×F5, C6×F5, C2×C3⋊F5, C2×S3×D5, D4×F5, D6⋊F5, C12×F5, C60⋊C4, D5×D12, C2×S3×F5, F5×D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22×C4, C2×D4, C4○D4, F5, C4×S3, D12, C22×S3, C4×D4, C2×F5, S3×C2×C4, C2×D12, C4○D12, C22×F5, C4×D12, S3×F5, D4×F5, C2×S3×F5, F5×D12
(1 30 59 17 47)(2 31 60 18 48)(3 32 49 19 37)(4 33 50 20 38)(5 34 51 21 39)(6 35 52 22 40)(7 36 53 23 41)(8 25 54 24 42)(9 26 55 13 43)(10 27 56 14 44)(11 28 57 15 45)(12 29 58 16 46)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 32 55 37)(14 33 56 38)(15 34 57 39)(16 35 58 40)(17 36 59 41)(18 25 60 42)(19 26 49 43)(20 27 50 44)(21 28 51 45)(22 29 52 46)(23 30 53 47)(24 31 54 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 23)(14 22)(15 21)(16 20)(17 19)(26 36)(27 35)(28 34)(29 33)(30 32)(37 47)(38 46)(39 45)(40 44)(41 43)(49 59)(50 58)(51 57)(52 56)(53 55)
G:=sub<Sym(60)| (1,30,59,17,47)(2,31,60,18,48)(3,32,49,19,37)(4,33,50,20,38)(5,34,51,21,39)(6,35,52,22,40)(7,36,53,23,41)(8,25,54,24,42)(9,26,55,13,43)(10,27,56,14,44)(11,28,57,15,45)(12,29,58,16,46), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,32,55,37)(14,33,56,38)(15,34,57,39)(16,35,58,40)(17,36,59,41)(18,25,60,42)(19,26,49,43)(20,27,50,44)(21,28,51,45)(22,29,52,46)(23,30,53,47)(24,31,54,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60), (1,3)(4,12)(5,11)(6,10)(7,9)(13,23)(14,22)(15,21)(16,20)(17,19)(26,36)(27,35)(28,34)(29,33)(30,32)(37,47)(38,46)(39,45)(40,44)(41,43)(49,59)(50,58)(51,57)(52,56)(53,55)>;
G:=Group( (1,30,59,17,47)(2,31,60,18,48)(3,32,49,19,37)(4,33,50,20,38)(5,34,51,21,39)(6,35,52,22,40)(7,36,53,23,41)(8,25,54,24,42)(9,26,55,13,43)(10,27,56,14,44)(11,28,57,15,45)(12,29,58,16,46), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,32,55,37)(14,33,56,38)(15,34,57,39)(16,35,58,40)(17,36,59,41)(18,25,60,42)(19,26,49,43)(20,27,50,44)(21,28,51,45)(22,29,52,46)(23,30,53,47)(24,31,54,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60), (1,3)(4,12)(5,11)(6,10)(7,9)(13,23)(14,22)(15,21)(16,20)(17,19)(26,36)(27,35)(28,34)(29,33)(30,32)(37,47)(38,46)(39,45)(40,44)(41,43)(49,59)(50,58)(51,57)(52,56)(53,55) );
G=PermutationGroup([[(1,30,59,17,47),(2,31,60,18,48),(3,32,49,19,37),(4,33,50,20,38),(5,34,51,21,39),(6,35,52,22,40),(7,36,53,23,41),(8,25,54,24,42),(9,26,55,13,43),(10,27,56,14,44),(11,28,57,15,45),(12,29,58,16,46)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,32,55,37),(14,33,56,38),(15,34,57,39),(16,35,58,40),(17,36,59,41),(18,25,60,42),(19,26,49,43),(20,27,50,44),(21,28,51,45),(22,29,52,46),(23,30,53,47),(24,31,54,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,23),(14,22),(15,21),(16,20),(17,19),(26,36),(27,35),(28,34),(29,33),(30,32),(37,47),(38,46),(39,45),(40,44),(41,43),(49,59),(50,58),(51,57),(52,56),(53,55)]])
45 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 5 | 6A | 6B | 6C | 10A | 10B | 10C | 12A | 12B | 12C | ··· | 12L | 15 | 20 | 30 | 60A | 60B |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 6 | 6 | 6 | 10 | 10 | 10 | 12 | 12 | 12 | ··· | 12 | 15 | 20 | 30 | 60 | 60 |
size | 1 | 1 | 5 | 5 | 6 | 6 | 30 | 30 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 30 | 30 | 30 | 30 | 4 | 2 | 10 | 10 | 4 | 24 | 24 | 2 | 2 | 10 | ··· | 10 | 8 | 8 | 8 | 8 | 8 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | S3 | D4 | D6 | D6 | C4○D4 | C4×S3 | C4×S3 | D12 | C4○D12 | F5 | C2×F5 | C2×F5 | S3×F5 | D4×F5 | C2×S3×F5 | F5×D12 |
kernel | F5×D12 | D6⋊F5 | C12×F5 | C60⋊C4 | D5×D12 | C2×S3×F5 | C5⋊D12 | C5×D12 | D60 | C4×F5 | C3×F5 | C4×D5 | C2×F5 | C3×D5 | Dic5 | C20 | F5 | D5 | D12 | C12 | D6 | C4 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 1 | 1 | 2 | 4 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 1 | 1 | 1 | 2 |
Matrix representation of F5×D12 ►in GL8(𝔽61)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 60 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 60 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 60 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 60 |
60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 60 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 60 |
60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 60 |
G:=sub<GL(8,GF(61))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,60,60,60,60],[60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,50,0,0,0,0,0,0,0,0,50,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0],[0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60],[60,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60] >;
F5×D12 in GAP, Magma, Sage, TeX
F_5\times D_{12}
% in TeX
G:=Group("F5xD12");
// GroupNames label
G:=SmallGroup(480,995);
// by ID
G=gap.SmallGroup(480,995);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,219,100,1356,9414,2379]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^4=c^12=d^2=1,b*a*b^-1=a^3,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations