Extensions 1→N→G→Q→1 with N=C4 and Q=C5⋊S4

Direct product G=N×Q with N=C4 and Q=C5⋊S4
dρLabelID
C4×C5⋊S4606C4xC5:S4480,1025

Semidirect products G=N:Q with N=C4 and Q=C5⋊S4
extensionφ:Q→Aut NdρLabelID
C4⋊(C5⋊S4) = C20⋊S4φ: C5⋊S4/C5×A4C2 ⊆ Aut C4606+C4:(C5:S4)480,1026

Non-split extensions G=N.Q with N=C4 and Q=C5⋊S4
extensionφ:Q→Aut NdρLabelID
C4.1(C5⋊S4) = C20.1S4φ: C5⋊S4/C5×A4C2 ⊆ Aut C41206-C4.1(C5:S4)480,1024
C4.2(C5⋊S4) = C20.2S4φ: C5⋊S4/C5×A4C2 ⊆ Aut C41604-C4.2(C5:S4)480,1030
C4.3(C5⋊S4) = C20.3S4φ: C5⋊S4/C5×A4C2 ⊆ Aut C4804+C4.3(C5:S4)480,1032
C4.4(C5⋊S4) = C20.S4central extension (φ=1)1206C4.4(C5:S4)480,259
C4.5(C5⋊S4) = C52U2(𝔽3)central extension (φ=1)1204C4.5(C5:S4)480,261
C4.6(C5⋊S4) = C20.6S4central extension (φ=1)804C4.6(C5:S4)480,1031

׿
×
𝔽